

Forecasting Future Energy Needs

Meet The Team

Adam Chua

Abhishek Sarepaka

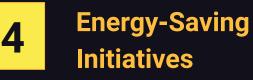
Ally Nguyen

Noah Rivera

OBJECTIVE

Develop a comprehensive system to forecast future energy requirements by county, supporting SCE in infrastructure development and resource allocation. This project also aims to create customized energy-saving programs for areas with high energy usage.

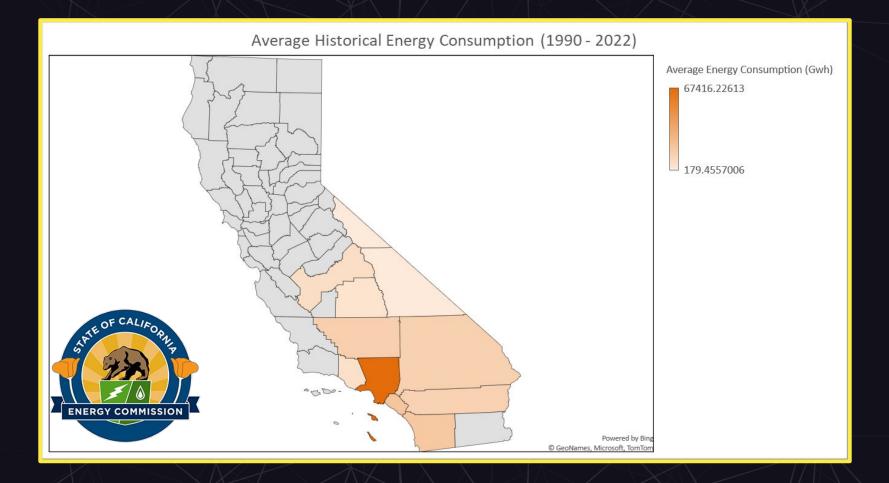
Contents



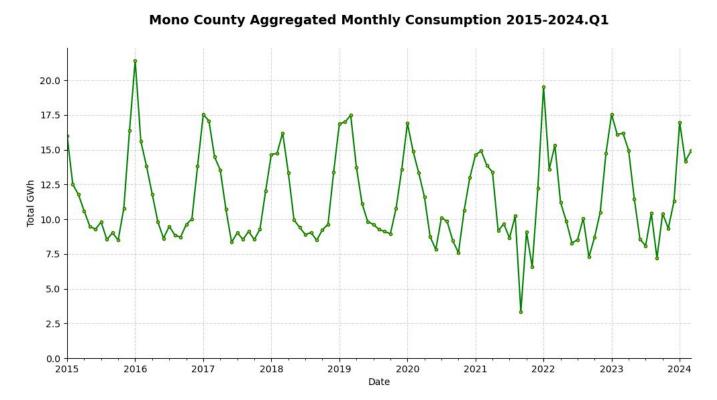
Key Factors Analyses

Resource Allocation Strategies

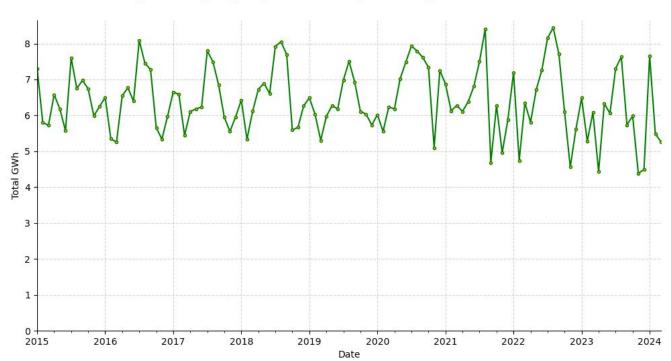
KEY FACTORS ANALYSES


Historical Energy Consumption

 \sim


Analysis of Energy trends in SCE territories

Let's Take A Look At The SCE territorial map:



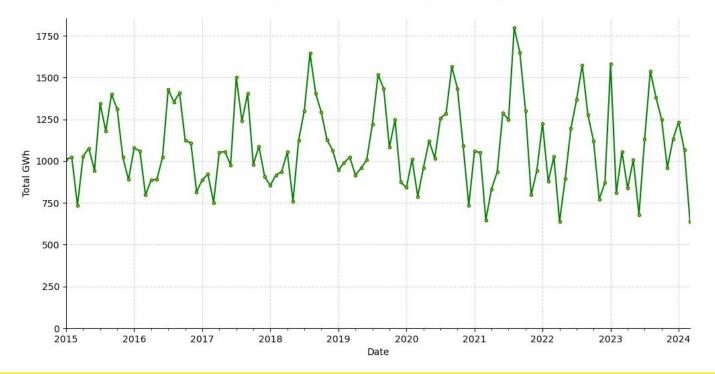
Breakdown of energy consumption by County:

Maximum Energy Usage: 21 GWh Minimum Energy Usage: 3 GWh

Inyo County Aggregated Monthly Consumption 2015-2024.Q1

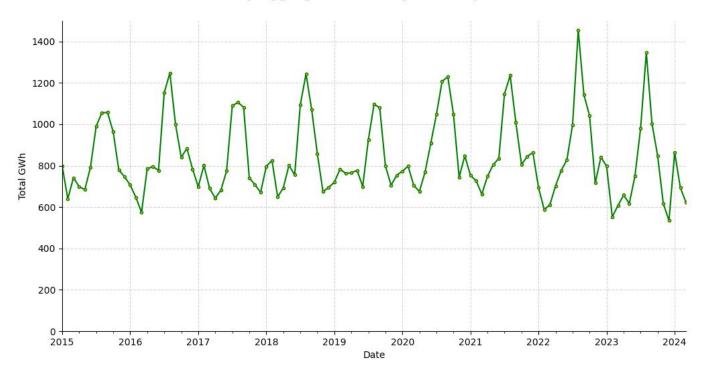
Maximum Energy Usage: 8.25 GWh Minimum Energy Usage: 4.25 GWh

Total GWh 0 -Date

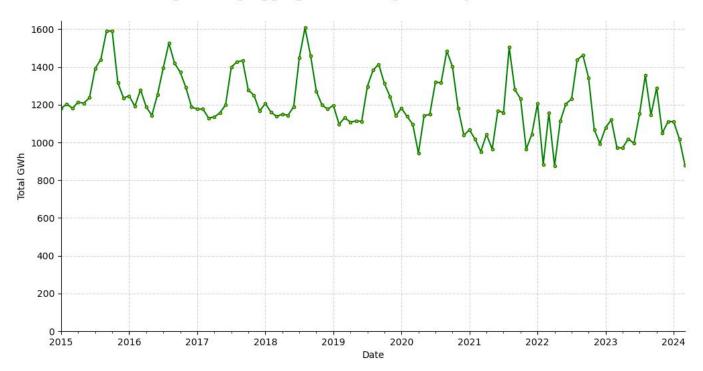

Tulare County Aggregated Monthly Consumption 2015-2024.Q1

Maximum Energy Usage: 800.16 GWh Minimum Energy Usage: 100.21 GWh

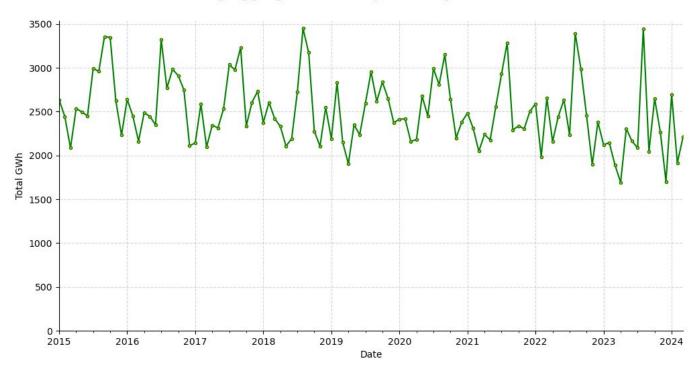
Total GWh 0+2015 Date


Kern County Aggregated Monthly Consumption 2015-2024.Q1

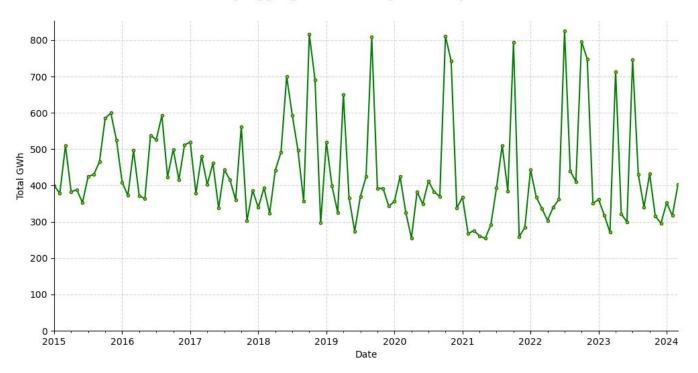
Maximum Energy Usage: 8.25 GWh Minimum Energy Usage: 4.25 GWh


San Bernardino County Aggregated Monthly Consumption 2015-2024.Q1

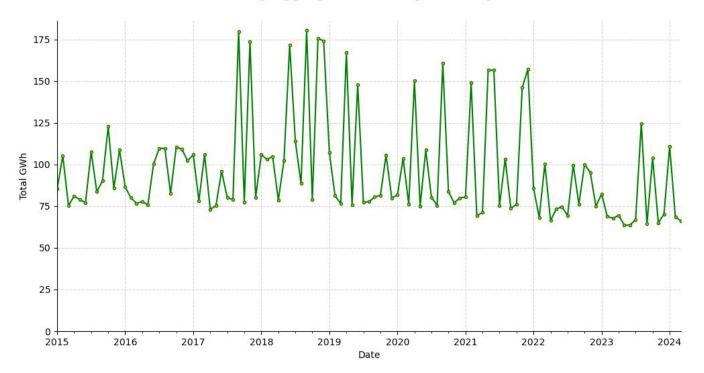
Maximum Energy Usage: 1750.40 GWh Minimum Energy Usage: 500.5 GWh


Riverside County Aggregated Monthly Consumption 2015-2024.Q1

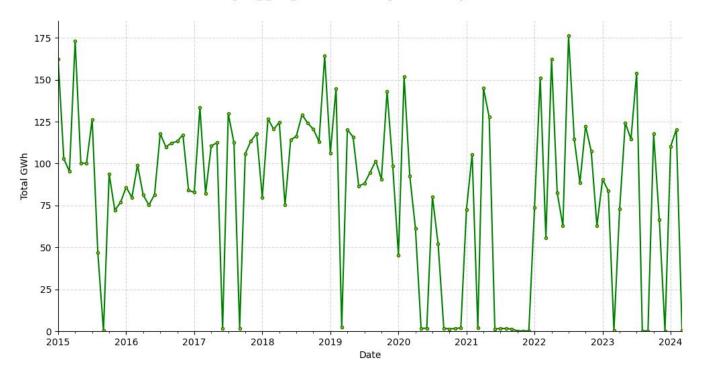
Maximum Energy Usage: 1400.4 GWh Minimum Energy Usage: 400.75 GWh


Orange County Aggregated Monthly Consumption 2015-2024.Q1

Maximum Energy Usage: 1600 GWh Minimum Energy Usage: 800.25 GWh

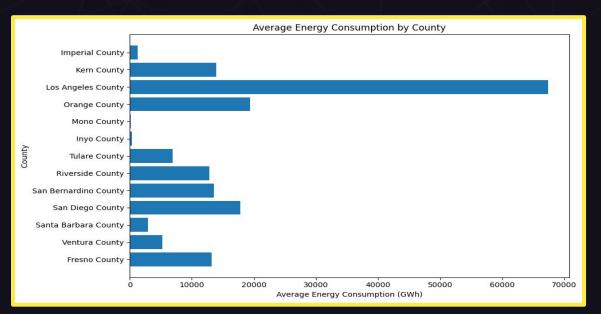

Maximum Energy Usage: 3425 GWh Minimum Energy Usage: 1700 GWh

LA County Aggregated Monthly Consumption 2015-2024.Q1


Ventura County Aggregated Monthly Consumption 2015-2024.Q1

Maximum Energy Usage: 800.25 GWh Minimum Energy Usage: 250 GWh

Santa Barbara County Aggregated Monthly Consumption 2015-2024.Q1


Maximum Energy Usage: 179 GWh Minimum Energy Usage: 62 GWh

Fresno County Aggregated Monthly Consumption 2015-2024.Q1

Maximum Energy Usage: 176 GWh Minimum Energy Usage: 0 GWh

Comparative Analysis

- Los Angeles County has the highest energy consumption
- Mono and Inyo County has the lowest energy consumption

Why are some counties higher/lower than others?



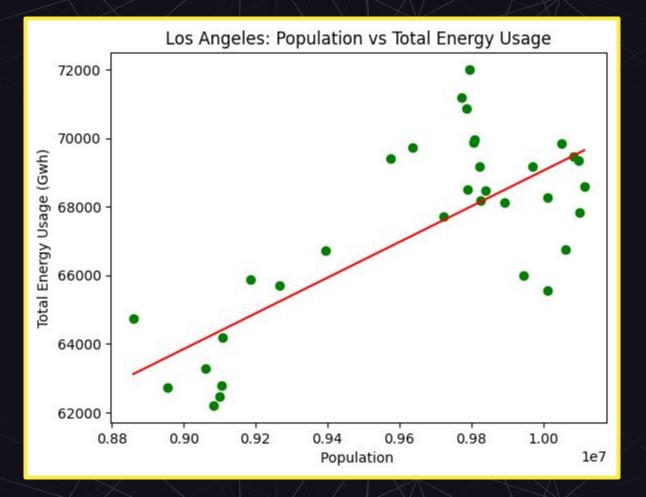
Population Factors

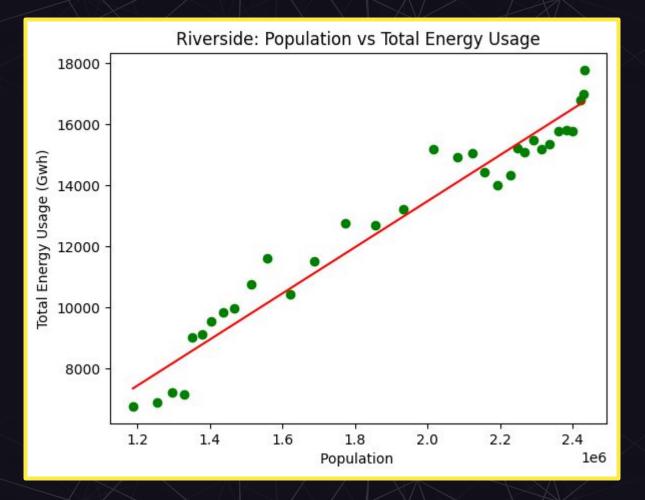
Factors taken into consideration:

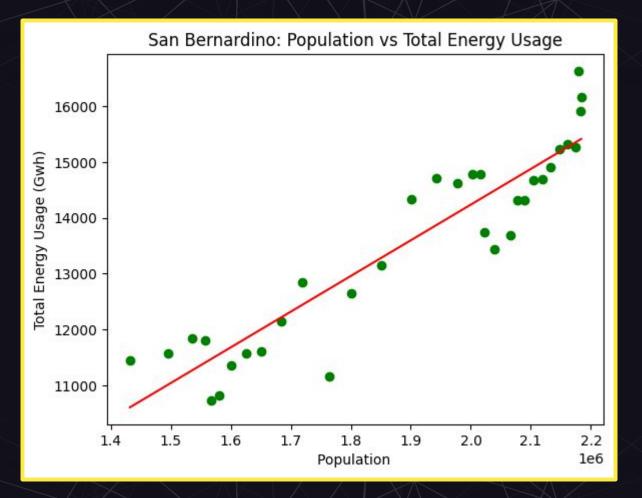
- Total Population vs. Energy Usage
- Population Growth Rate
- Migrational Patterns

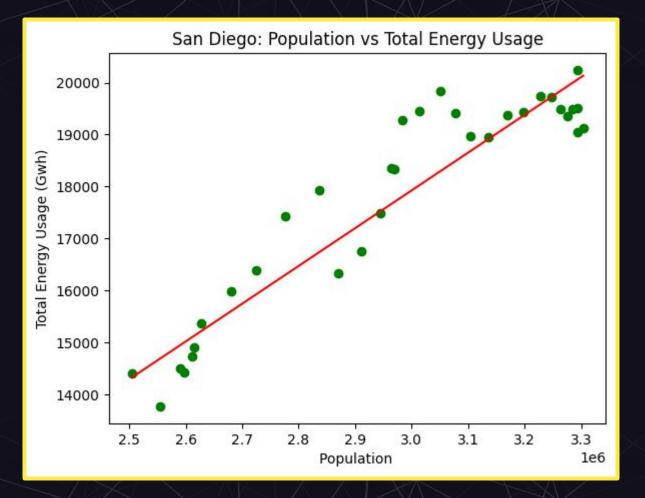
Population Study

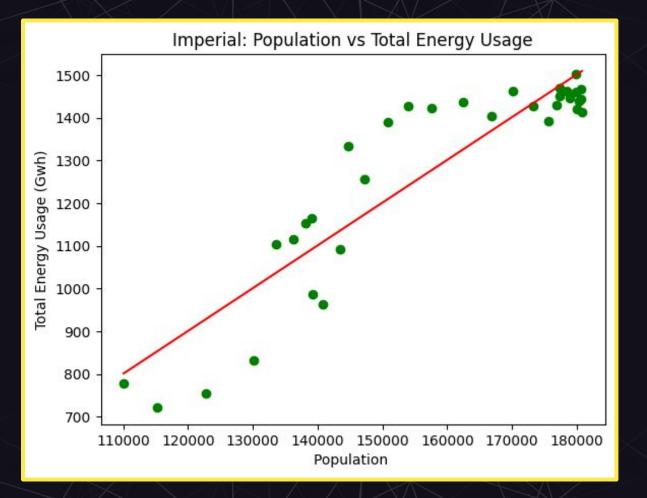
- Los Angeles County has the highest population
- Mono and Inyo County has the lowest population

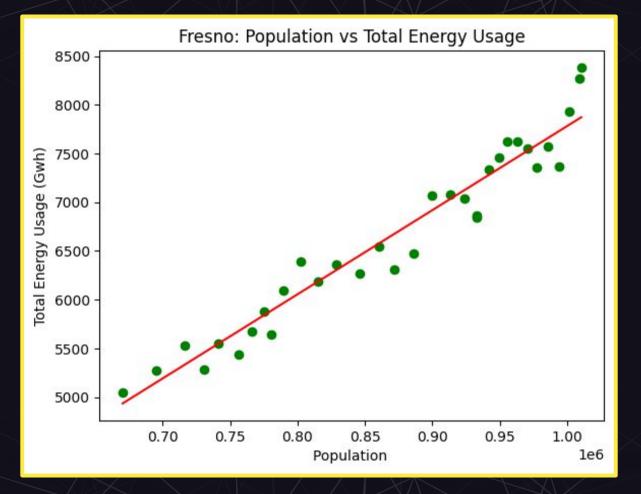

Linear Regression

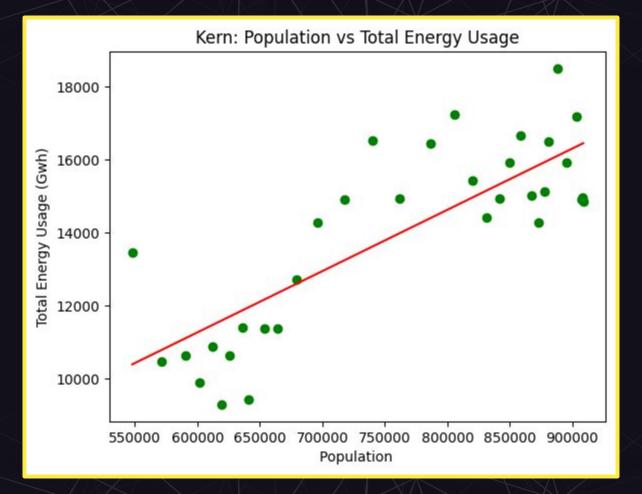

- statistical method used to model the relationship between a dependent variable and one or more independent variables by fitting a linear equation to the observed data points

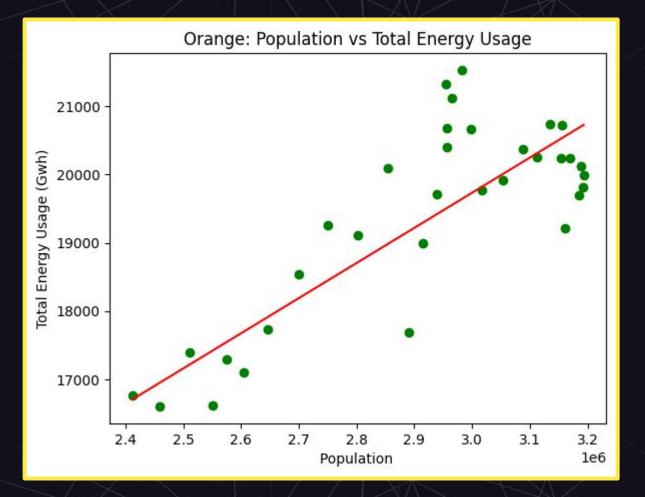

- commonly used for prediction and forecasting tasks

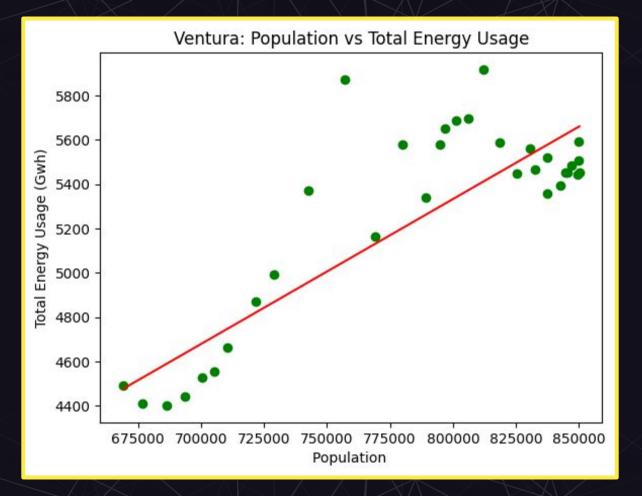

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	۰	٠	٠	۰	۰	٠	٠	٠
۰	۰	۰	٠	۰	۰	۰	۰	۰	٠
۰	۰	٠	٠	۰	۰	۰	۰	۰	•

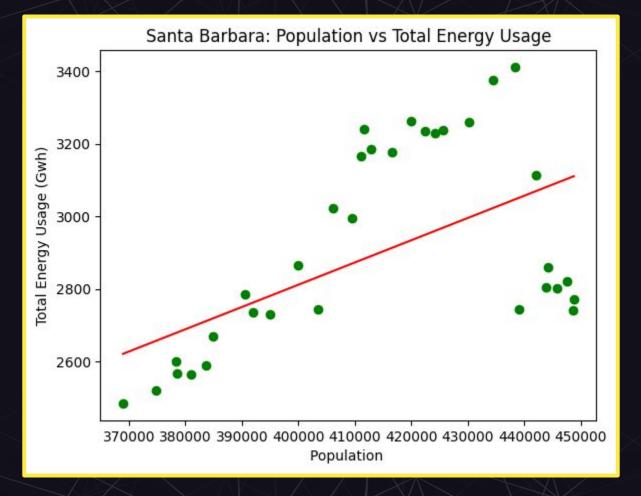


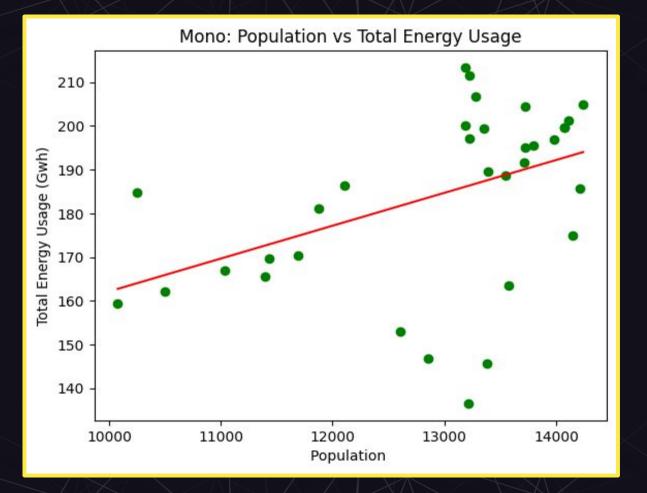


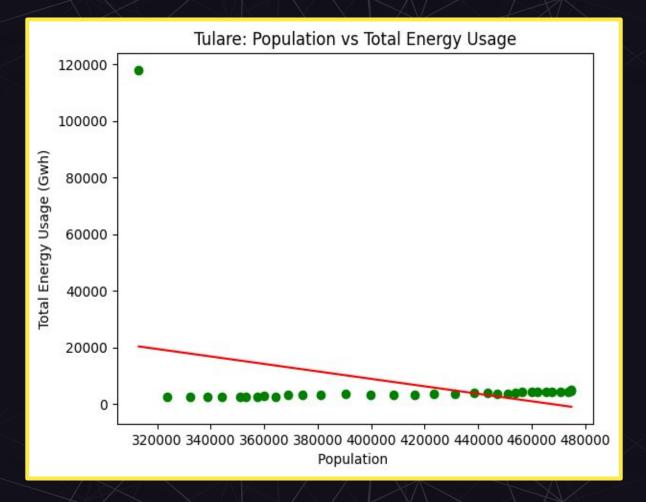


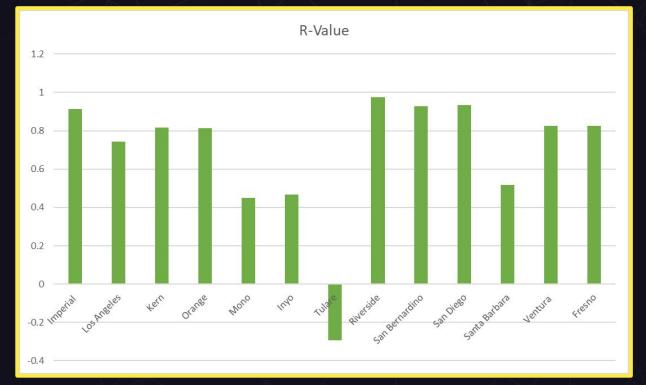


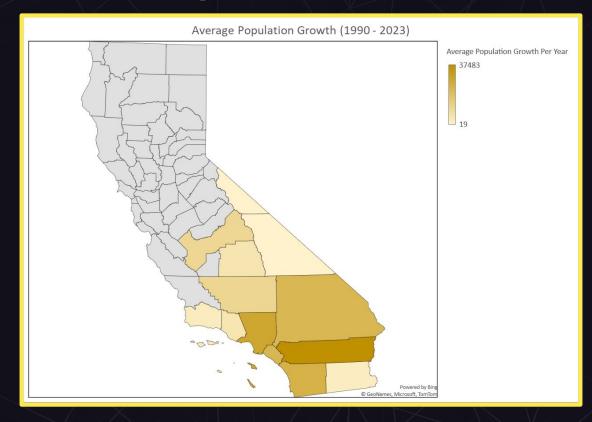












R-Value for each Linear Regression Model per county:

- Mono, Inyo, and Santa Barbara have low correlation rates
- Tulare has a negative correlation
- Rest have high correlation values

Population Growth

Migrational Patterns

Financial Trends

Research Analysis of Financial Trends

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Energy Prices

Fluctuations in energy prices can affect economic activity and energy consumption patterns. High energy prices might incentivize energy efficiency and the shift towards alternative energy sources, while low prices could encourage higher consumption.

Key factors that affect energy prices include:

- Fuel Prices
- Power Plant Costs
- Transmission and distribution maintenance costs
- Weather conditions
- Price regulations

Technological Advances

Electric Vehicles

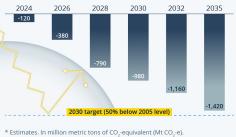
Modern EVs benefit significantly from advancements in lithium-ion battery technology, which have improved energy density, efficiency, and reduced charging times.

Nuclear Pumps

Advances in the design and materials used in nuclear pumps have increased their efficiency, reducing the energy required for operation and increasing the reliability of cooling systems in reactors.

Solar Panels

Modern solar panels have significantly higher efficiency rates due to advancements in photovoltaic (PV) cell technology. Developments in materials used have led to cheaper and more efficient solar cells that make solar panels more cost-effective and accessible.



Financing

In 2022, the United States introduced significant new funding through the Inflation Reduction Act (IRA), designed to greatly enhance energy efficiency measures that reduce energy costs.

How the Inflation Reduction Act Will Affect U.S. Emissions

Annual change in net U.S. GHG emissions due to the Inflation Reduction Act of 2022 relative to current policy scenario*

statista 🌠

* Estimates. In million metric tons of CO₂-equivalent (Mt CO₂-e). Source: Rapid Energy Policy Evaluation and Analysis Toolkit This funding includes the \$4.5 billion High-Efficiency Electric Home Rebate program, which offers up to \$14,000 per household for improvements in heating, cooling, insulation, air sealing, and electrical systems, including lighting and appliances.

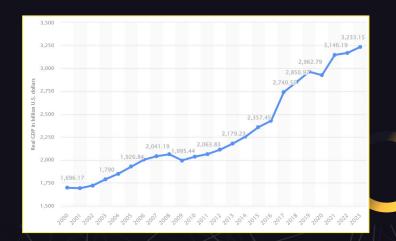
Marketing Effects

Market Adoption

The base factors for market adoption are:
Willingness to adopt
Awareness of efficient technologies Derived from a regression analysis of technology adoptions from several studies on new technology market penetration.

Consumer Spending

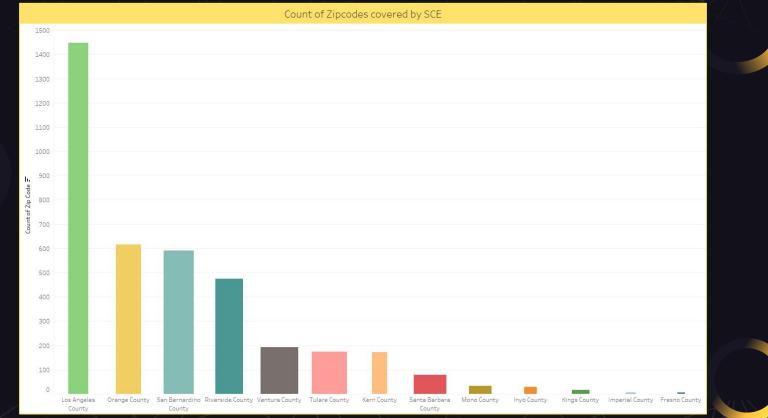
Shown to affect sales of more energy efficient technologies.


GDP

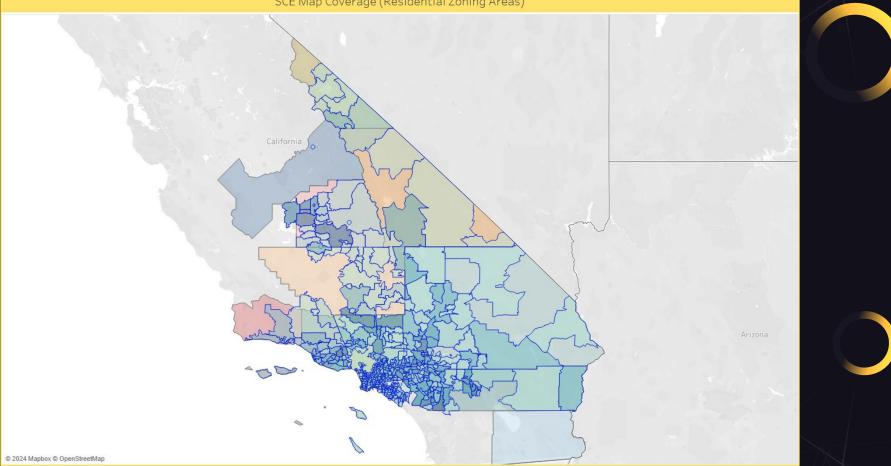
Globally, energy use and GDP are positively correlated, although energy intensity has declined over time and is usually lower in richer countries.

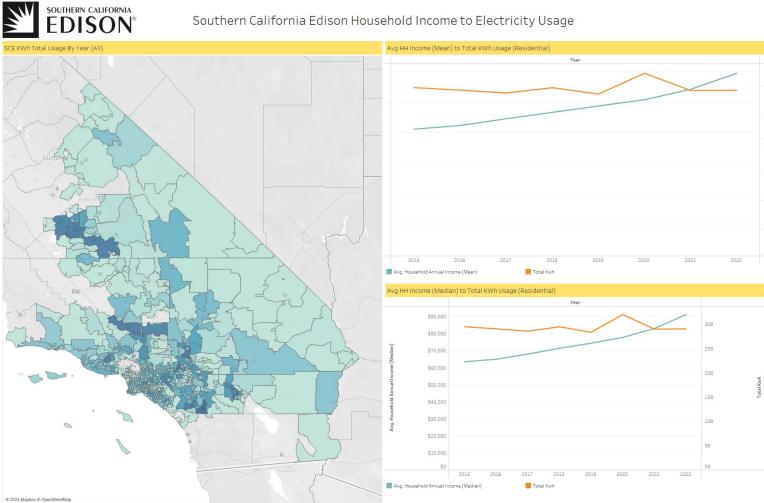
U.S. energy consumption per dollar of **GDP** declined nearly every year since 1949

Along with per capita energy consumption, another measure of the intensity of energy consumption is how efficiently the economy uses energy to produce every dollar of gross domestic product (GDP). The amount of U.S. energy consumption per real 2012 dollar of GDP—the adjusted value to account for changes in the value of the U.S. dollar—declined in most years from 1949 through 2021. In 2022, energy use per dollar of GDP was 0.6% higher than in 2021. Although growth of U.S. energy consumption is closely tied to growth in GDP and other economic factors, it is partially offset by improvements in energy efficiency and other changes in the economy that result in lower energy use per unit of economic output. Many of the factors that contribute to lower per capita energy consumption also contribute to lower energy consumption per dollar of GDP.

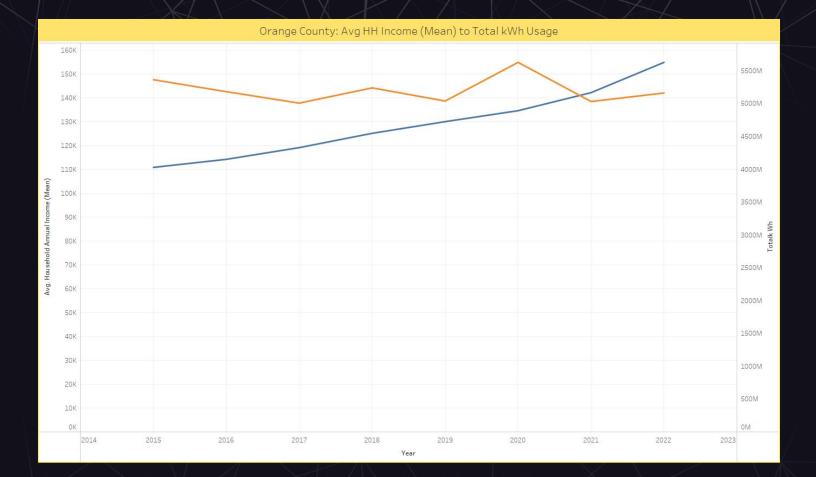

Last updated: July 5, 2023, with data from the Monthly Energy Review, April 2023; data for 2022 are preliminary.

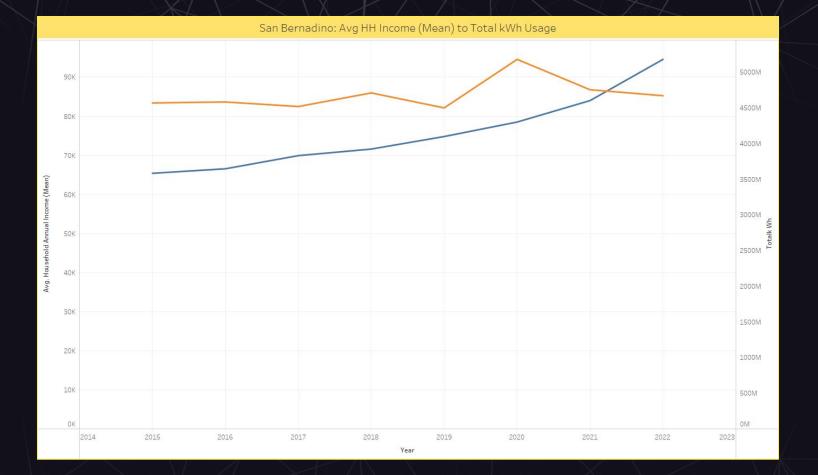
Energy Consumption to Income by County

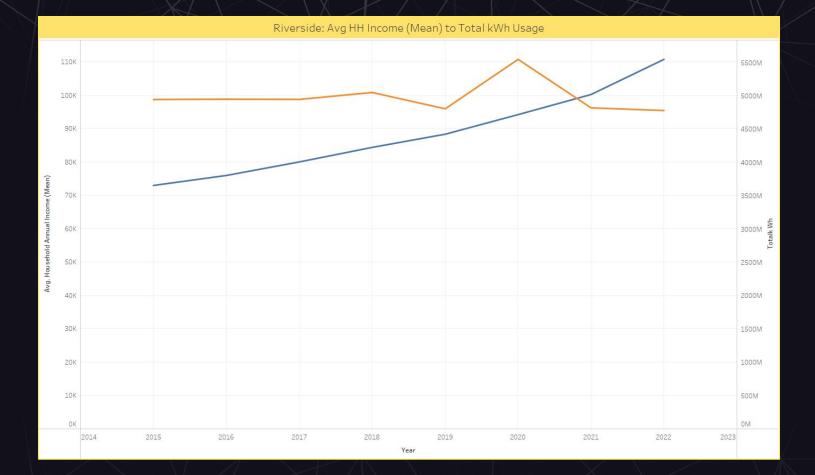

How many zipcodes does SCE cover?

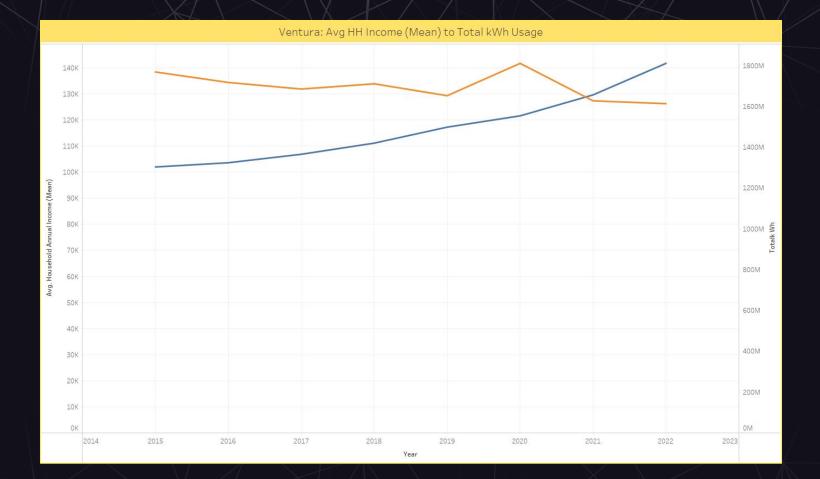

....

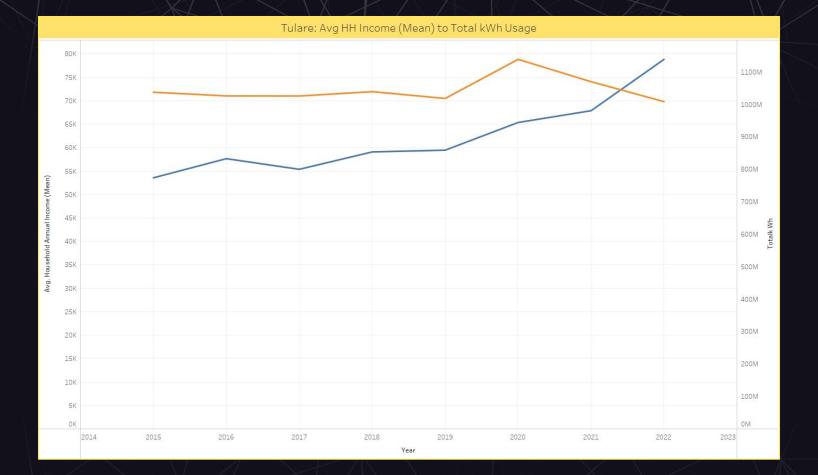

....

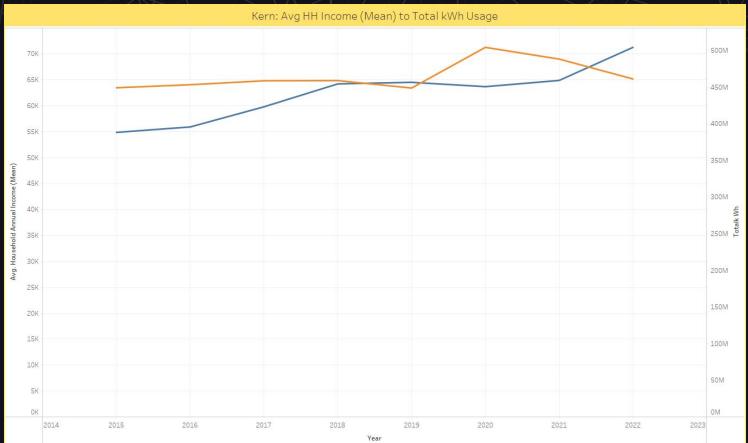

SCE Map Coverage (Residential Zoning Areas)

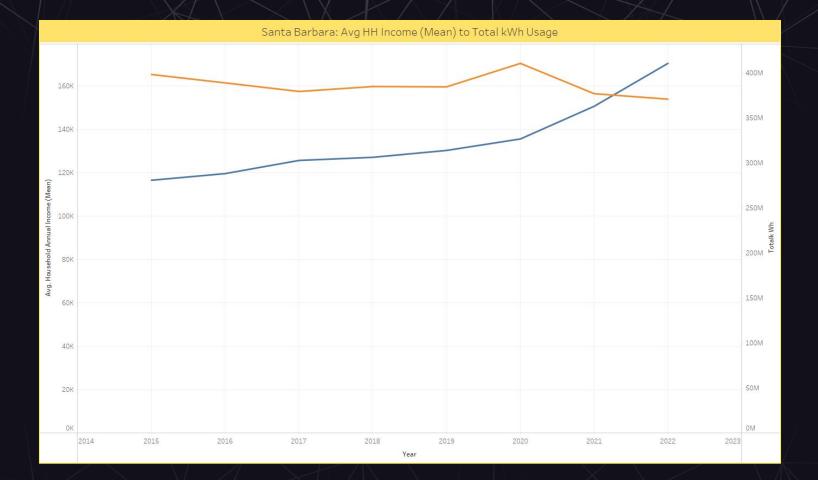


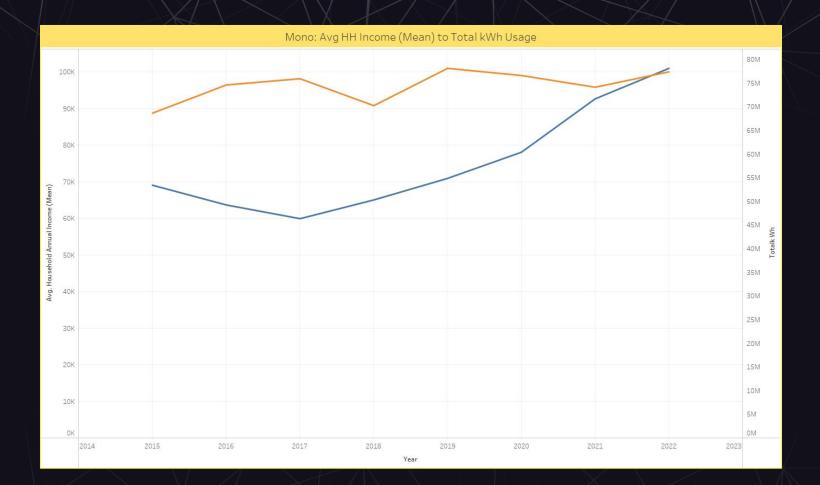

Southern California Edison Household Income to Electricity Usage

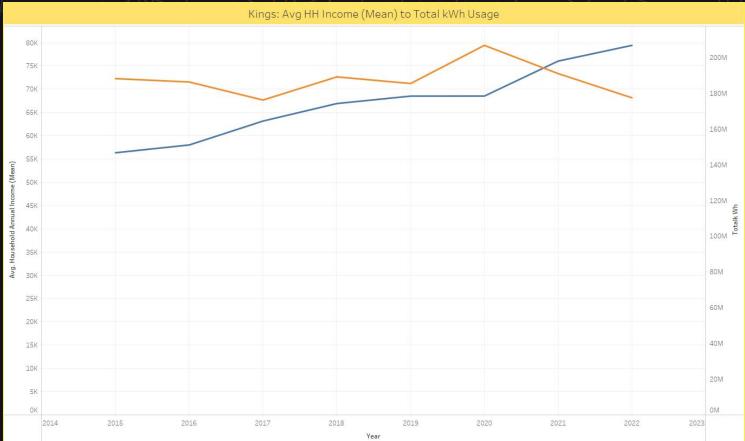


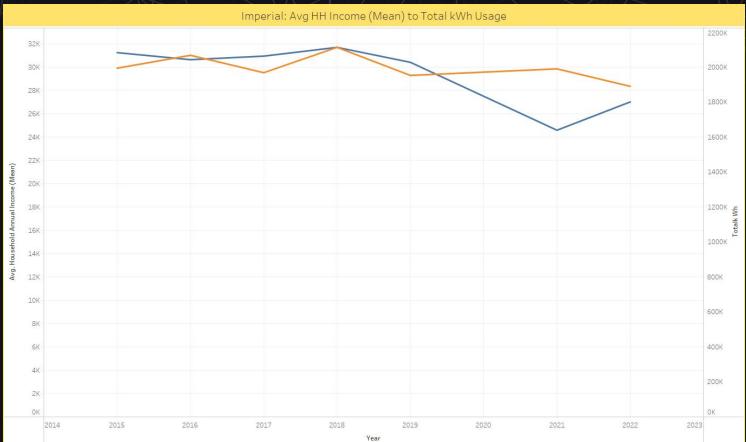


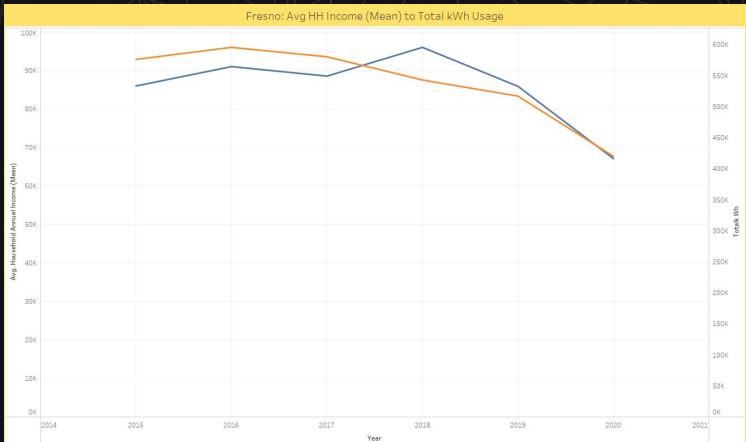







_ X _




real

X _

- V _

Political & External Factors

Affecting Energy Consumption

Political Ideology & Energy Efficiency

Democrat-Leaning

Tend to prioritize social and environmental concerns that may lead to higher eco-energy efficiency

Republican-Leaning

Often prioritize economic factors

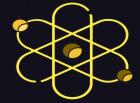
Ideological differences in support for investments in energy efficiency, depend on a myriad of factors that affect the current economical and environmental states

California's Energy Policies & Initiatives

Senate Bill 100

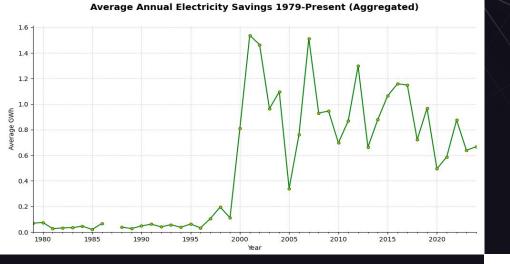
Goal of achieving 100% carbon-free energy by 2045, and updates the state's Renewables Portfolio Standard to ensure that by 2030 at least 60% of California's electricity is renewable

Inflation Reduction Act

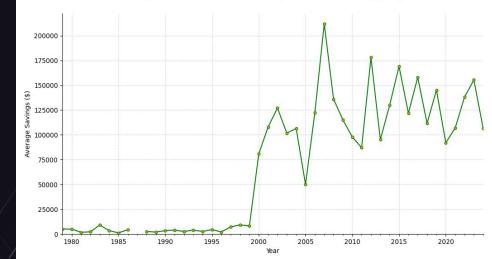

Increased investments in state and local governments to invest in energy efficiency and grid resilience

California's Energy Policies & Initiatives

Energy Systems Infrastructure Planning


California is transitioning its electricity system to rely increasingly on clean energy sources like solar, wind, and geothermal power as the core part of this

California Energy Commission


Implemented energy efficiency standards for buildings and appliances and offers incentives and rebates for energy-efficient upgrades

Energy Conservation Assistance Act

Average Energy Savings	Total Energy Savings
(kWh)	(kWh)
470,169	434,906,781

Average Annual Estimated Savings 1979-Present (Aggregated)

Average Estimated Savings	Total Estimated Savings
(\$)	(\$)
\$53,429.47	\$49,368,827.08

Impact of Clean Energy Transition

Expected to increase electricity consumption but is accompanied by efforts to strengthen the power grid and promote energy efficiency

EV Policies aim to reduce greenhouse emissions from transportation and alleviate strain on the electricity grid

Investments in renewable energy technologies, such as solar and wind power, are projected to reduce energy costs over time

As more people replace their gas-powered vehicles with EV's, electricity usage is expected to increase

Significant Legislation and Programs

DOE Title 17 Clean Energy Financing Program

Renewables Portfolio Standard

California's Energy Grid Advancements

Complement Renewable Energy

Today's fleet of storage resources can capture enough electricity to power up to 5 million California homes.

••••

....

Battery Storage Infrastructure

Investments have been made to accompany the energy grid, with planned expansions by 2026


Load Flexibility

Practice of adjusting energy usage to match the supply of electricity.

Decarbonization Challenges & Opportunities

Natural Gas to Electric Heating

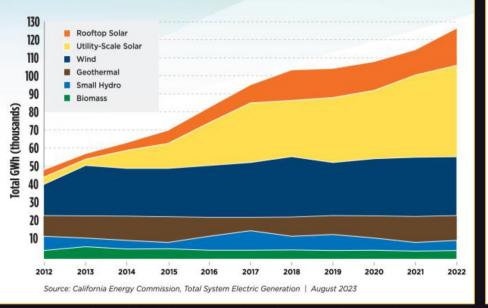
Could substantially reduce emissions in California's building sector but will increase electricity consumption

Technological Advancements

Energy-efficient structural design and power stability for critical facilities are emerging trends in California.

Water Heating

Energy-intensive element, comprising fully <u>1/4 of total residential energy use</u>, improving water-heating efficiency could significantly decrease California's overall energy usage


Future Energy Strategies & Goals

California aims for carbon neutrality by 2045, necessitating bold actions and policy initiatives that lead to a 100% clean grid and build more renewable sources to <u>reduce</u> <u>pollution, mitigate climate</u> <u>change impacts, and stabilize</u> <u>energy costs</u>

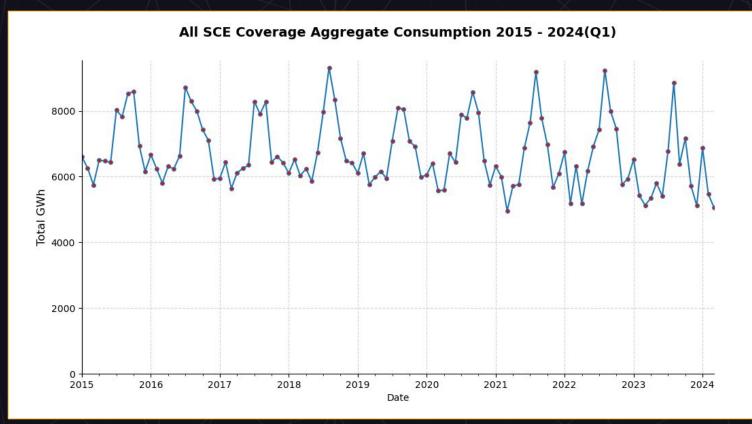


Load flexibility, energy storage, and additional renewable resources are essential for <u>meeting</u> <u>electricity demand</u>, especially as solar power generation fluctuates

Renewable Energy Generation Growing in California

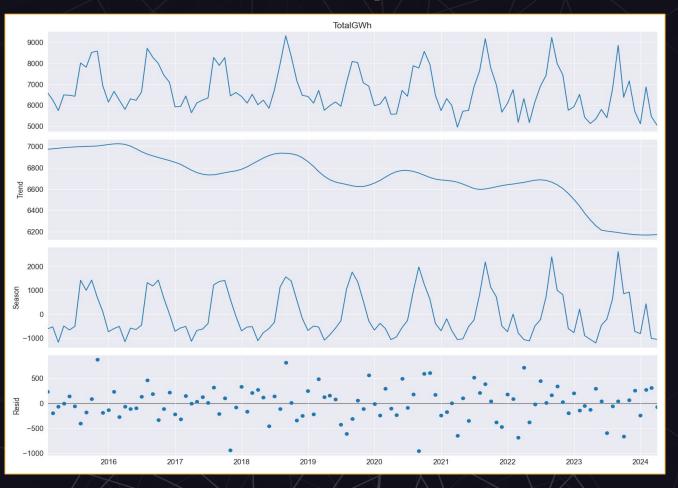
Figure 1. Maximum 5-minute battery output to date. Maximum output doubled from 500 to 1,000 MW over just three and a half months and continues to grow.

Source: California Energy Commission (CEC) analysis of California Independent System Operator (ISO) data



Forecasting Models

Technologies Used



Let's Take A Look At The Past...

Data Source: SCE Quarterly Energy Data Reports

Time-Decomposition

Seasonal Autoregressive Integrated Moving Average with Exogenous Regressors

- ★ A statistical model designed to capture and forecast the underlying patterns, trends and seasonality in time-series data.
- ★ A powerful time series forecasting technique that extends the traditional
 ARIMA model to account for seasonality and external factors.

• •	•	• •	٠	٠	٠	٠	•
••	•	• •	٠	٠	٠	٠	•
••	•	••	۰	٠	۰	۰	•
••	•	• •	۰	۰	۰	۰	•

Components

Seasonal (S)

Autoregressive (AR)

Integrated (I)

Moving Average (MA)

Exogenous Regressors (X) Periodic patterns in data (weekly, monthly, annually, e.g.)

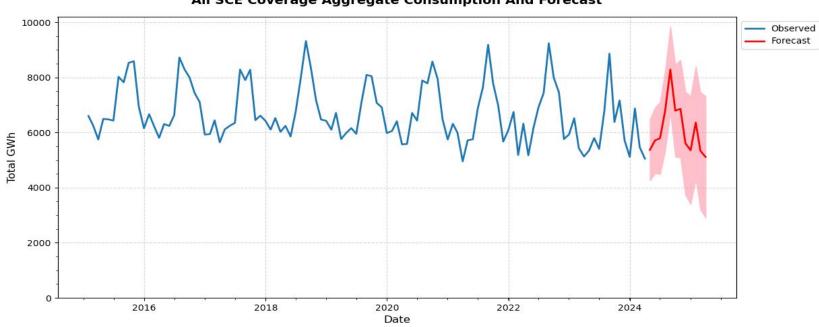
Represents relationship between current and previous values in the data

Differencing to make data stationary by removing trends and seasonality

Accounts for dependency of current value on past error terms, used to calculate trend

Allows inclusion of external factors that may affect data

SARIMAX Parameters



AutoArima To Find Optimal Model Parameters

Performing stepwise search to minimize aic

ARIMA(0,1,2)(0,0,1)[12]	intercept	:	AIC=inf, Time:	=0.29 sec	
ARIMA(0,1,0)(0,0,0)[12]	intercept	;	AIC=1818.138,	Time=0.01	sec
ARIMA(1,1,0)(1,0,0)[12]	intercept	:	AIC=1755.811,	Time=0.14	sec
ARIMA(0,1,1)(0,0,1)[12]	intercept	:	AIC=1783.109,	Time=0.16	sec
ARIMA(0,1,0)(0,0,0)[12]		:	AIC=1816.168,	Time=0.01	sec
ARIMA(1,1,0)(0,0,0)[12]	intercept	:	AIC=1818.627,	Time=0.02	sec
ARIMA(1,1,0)(2,0,0)[12]	intercept	:	AIC=1754.755,	Time=0.33	sec
ARIMA(1,1,0)(2,0,1)[12]	intercept	:	AIC=1758.579,	Time=0.90	sec
ARIMA(1,1,0)(1,0,1)[12]	intercept	:	AIC=1752.300,	Time=0.29	sec
ARIMA(1,1,0)(0,0,1)[12]	intercept	:	AIC=1783.855,	Time=0.12	sec
ARIMA(1,1,0)(1,0,2)[12]	intercept	:	AIC=1752.562,	Time=0.82	sec
ARIMA(1,1,0)(0,0,2)[12]	intercept	:	AIC=1772.004,	Time=0.32	sec
ARIMA(1,1,0)(2,0,2)[12]	intercept	:	AIC=1756.537,	Time=0.99	sec

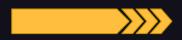
	: ARIMA(2,1 time: 19.666		2]				
local file	cime: 19:000	5000100	SARIMAX	Results			
Dep. Varia	======================================			y No	. Observatio	 ns:	111
Model:	SAR:	IMAX(2, 1, 0)x(1, 0, [1]	, 12) Lo	g Likelihood		-866.718
Date:			Mon, 22 Apr	2024 AI	С		1743.435
Time:			23:	35:21 BI	с		1756.937
Sample:			01-31	-2015 HQ	IC		1748.912
			- 03-31	-2024			
Covariance	Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-0.6216	0.081	-7.656	0.000	-0.781	-0.462	
ar.L2	-0.2782	0.079	-3.521	0.000	-0.433	-0.123	
ar.S.L12	0.9345	0.042	22.244	0.000	0.852	1.017	
ma.S.L12	-0.4895	0.142	-3.438	0.001	-0.769	-0.210	
sigma2	3.234e+05	4.85e+04	6.667	0.000	2.28e+05	4.18e+05	

All SCE Coverage Aggregate Consumption And Forecast

Date	Observed (GWh)
30-Apr-23	5345.507
31-May-23	5800.381
30-Jun-23	5406.098
31-Jul-23	6777.656
31-Aug-23	8865.066
30-Sep-23	6383.990
31-Oct-23	7166.511
30-Nov-23	5714.850
31-Dec-23	5115.264
31-Jan-24	6874.243
29-Feb-24	5469.842
31-Mar-24	5054.461

Date	Forecasted (GWh)
30-Apr-24	5370.162
31-May-24	5715.001
30-Jun-24	5796.459
31-Jul-24	6793.667
31-Aug-24	8287.066
30-Sep-24	6794.765
31-Oct-24	6860.351
30-Nov-24	5609.573
31-Dec-24	5355.777
31-Jan-25	6364.541
28-Feb-25	5336.996
31-Mar-25	5115.173

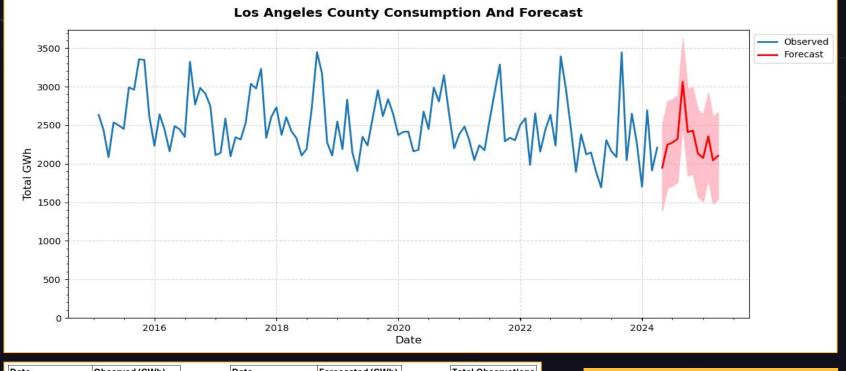
Total Observations		
117702		
MAE	Total	73,973.87
238.36	Observed	
RMSE	o boot ved	
303.75		
	Total	73,399.53
	Forecasted	
	Difference	- 0.78 %



County Forecasts

- → Predicted Consumptions with Error Values
- → Projected <u>Percentage Change</u> Based On Forecasted Period

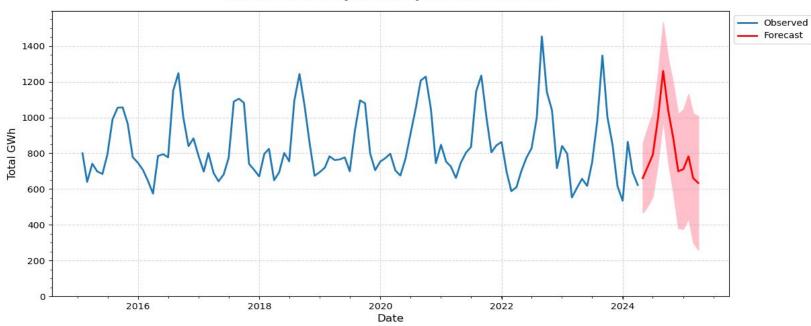
Zip Codes



Mapped + Grouped to their associated Counties

Data Source: California ZIP Codes List, Map, and Demographics (unitedstateszipcodes.org)

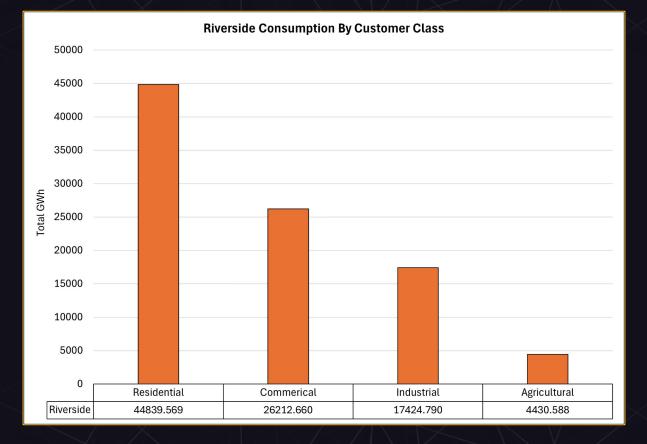
Counties With A Projected Usage Increase

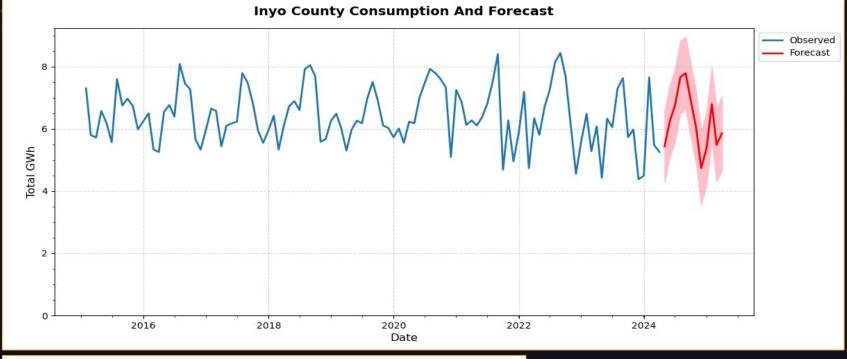

Date		Observed (GWh)
	30-Apr-23	1692.609
	31-May-23	2306.070
	30-Jun-23	2162.239
	31-Jul-23	2086.327
	31-Aug-23	3444.264
	30-Sep-23	2045.026
	31-Oct-23	2648.331
	30-Nov-23	2267.631
	31-Dec-23	1702.490
	31-Jan-24	2693.731
	29-Feb-24	1913.847
	31-Mar-24	2208.602

Date	Forecasted (GWh)
30-Apr-24	1947.918
31-May-24	2246.633
30-Jun-24	2274.569
31-Jul-24	2321.465
31-Aug-24	3061.117
30-Sep-24	2410.706
31-Oct-24	2428.892
30-Nov-24	2133.120
31-Dec-24	2074.585
31-Jan-25	2355.096
28-Feb-25	2042.961
31-Mar-25	2103.129

Total Obs	servations
	42304
MAE	
	225.86
RMSE	
	252.38

Total Observed	27,171.17
Total Forecasted	27,400.190
Difference	0.84 %

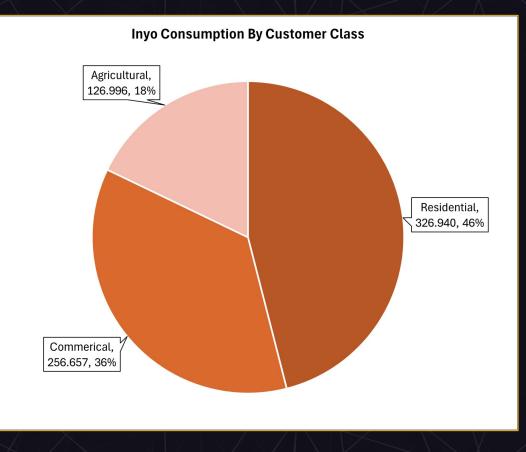

Riverside County Consumption And Forecast

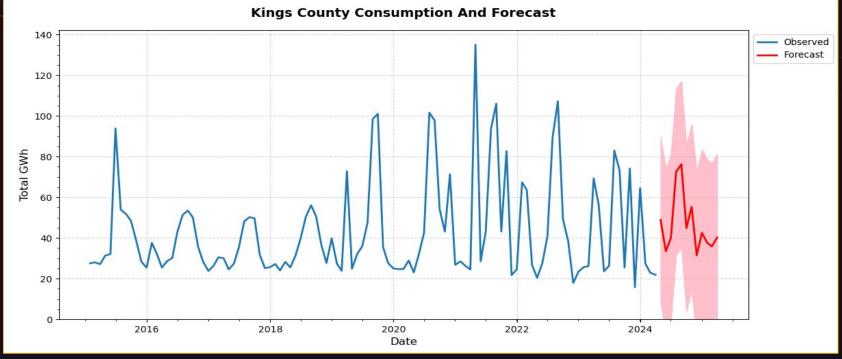

Date	Observed (GWh)
30-Apr-23	657.350
31-May-23	617.293
30-Jun-23	749.840
31-Jul-23	981.096
31-Aug-23	1347.202
30-Sep-23	1003.618
31-Oct-23	847.386
30-Nov-23	615.917
31-Dec-23	534.174
31-Jan-24	863.932
29-Feb-24	693.535
31-Mar-24	622.249

Date		Forecasted (GWh)
	30-Apr-24	660.496
3	1-May-24	726.809
;	30-Jun-24	792.701
	31-Jul-24	996.113
3	31-Aug-24	1260.693
3	30-Sep-24	1042.313
3	81-Oct-24	884.943
3	0-Nov-24	699.270
3	1-Dec-24	711.086
:	31-Jan-25	782.804
2	28-Feb-25	660.950
3	1-Mar-25	633.533

Total Observations	
	15369
MAE	
	59.88
RMSE	
	76.63

	Total Observed	9,533.59
	Total Forecasted	9,851.71
\succ	Difference	3.34 %

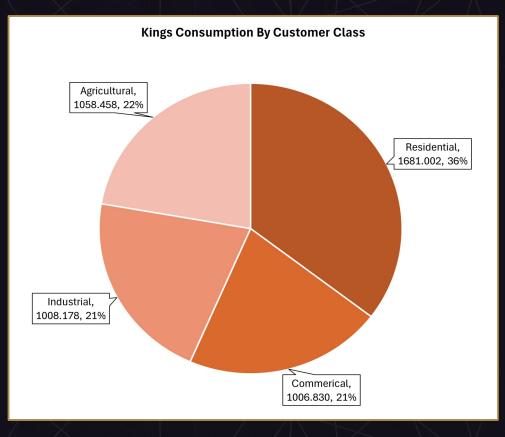


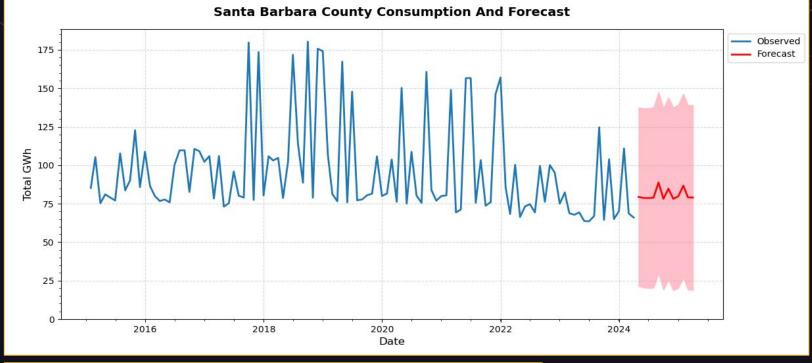

Date		Observed (GWh)
30-	Apr-23	4.431
31-1	1ay-23	6.329
30-	Jun-23	6.056
31	-Jul-23	7.302
31-/	Aug-23	7.631
30-9	Sep-23	5.735
31-	Oct-23	5.981
30-1	Vov-23	4.380
31-[Dec-23	4.493
31-	Jan-24	7.655
29-	eb-24	5.485
31-1	Mar-24	5.258

Date	Forecasted (GWh)
30-Apr-24	5.436
31-May-24	6.256
30-Jun-24	6.751
31-Jul-24	7.661
31-Aug-24	7.791
30-Sep-24	6.915
31-Oct-24	6.049
30-Nov-24	4.739
31-Dec-24	5.376
31-Jan-25	6.797
28-Feb-25	5.486
31-Mar-25	5.861

Total Observations	
	703
MAE	
	0.52
RMSE	
	0.65

Total Observed	70.74
Total Forecasted	75.12
Difference	6.19 %

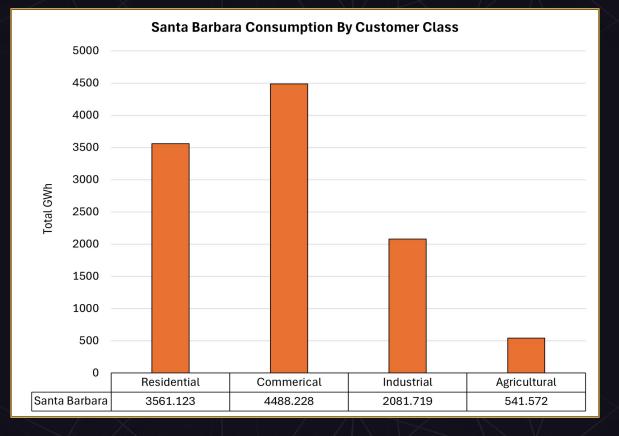



Date		Observed (GWh)
	30-Apr-23	56.041
	31-May-23	23.589
	30-Jun-23	26.259
	31-Jul-23	82.971
	31-Aug-23	73.295
	30-Sep-23	25.444
	31-Oct-23	74.138
	30-Nov-23	15.763
	31-Dec-23	64.531
	31-Jan-24	27.329
6	29-Feb-24	22.863
	31-Mar-24	21.844

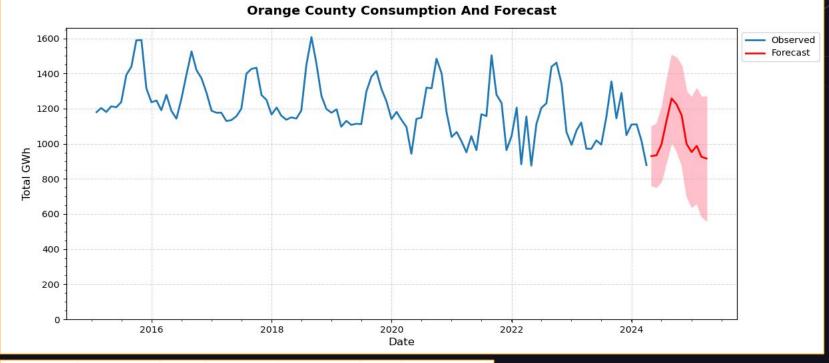
Date	Forecasted (GWh)
30-Apr-24	48.853
31-May-24	33.455
30-Jun-24	39.901
31-Jul-24	72.503
31-Aug-24	76.280
30-Sep-24	44.829
31-Oct-24	55.279
30-Nov-24	31.462
31-Dec-24	42.470
31-Jan-25	37.573
28-Feb-25	35.840
31-Mar-25	40.193

Total Observations	
587	
MAE	
	13.48
RMSE	
	14.52

Total Observed	514.07
Total Forecasted	558.64
Difference	8.67 %



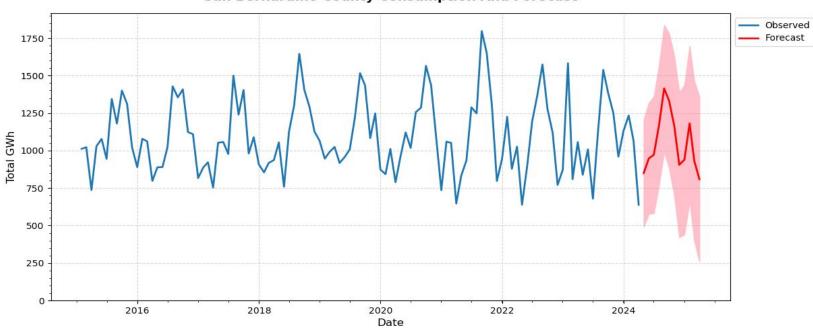
Date	Observed (GWh)
30-Apr-23	69.371
31-May-23	63.730
30-Jun-23	63.556
31-Jul-23	67.047
31-Aug-23	3 124.621
30-Sep-23	64.478
31-Oct-23	3 103.894
30-Nov-23	64.981
31-Dec-23	3 70.192
31-Jan-24	110.952
29-Feb-24	68.640
31-Mar-24	4 66.001


Date	Forecasted (GWh)
30-Apr-24	79.389
31-May-24	78.718
30-Jun-24	78.610
31-Jul-24	78.945
31-Aug-24	88.747
30-Sep-24	78.128
31-Oct-24	84.713
30-Nov-24	78.132
31-Dec-24	79.849
31-Jan-25	86.694
28-Feb-25	79.139
31-Mar-25	78.976

Total Observations		
2494		Total
MAE		Observ
15.93		Observ
RMSE		
17.48		Total
1.1.1.2		
		Foreca
	\nearrow	Differe

	7	Difference	3.47 %
48		Total Forecasted	970.04
94 93		Total Observed	937.46

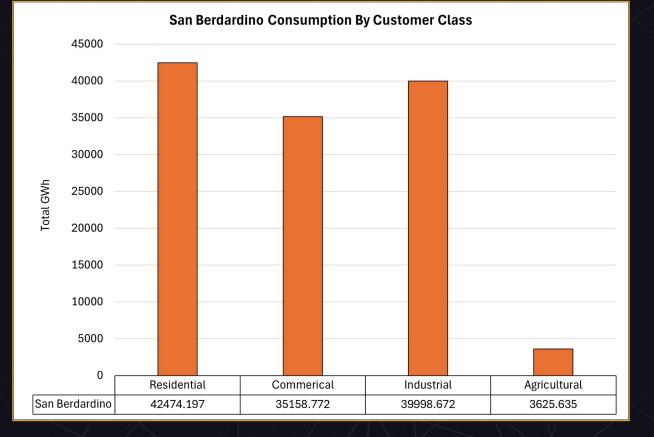
Counties With A Projected Usage Decrease

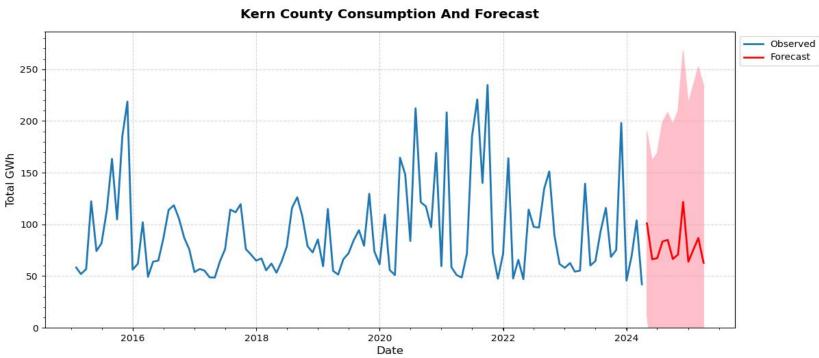


Date	Observed (GWh)
30-Apr-23	971.132
31-May-23	3 1019.520
30-Jun-23	995.141
31-Jul-23	3 1153.507
31-Aug-23	3 1355.042
30-Sep-23	3 1144.992
31-Oct-23	1289.703
30-Nov-23	1049.532
31-Dec-23	1109.989
31-Jan-24	1110.921
29-Feb-24	1019.566
31-Mar-24	4 878.710

Date	Forecasted (GWh)
30-Apr-24	930.060
31-May-24	934.348
30-Jun-24	995.831
31-Jul-24	1131.029
31-Aug-24	1257.999
30-Sep-24	1224.933
31-Oct-24	1162.580
30-Nov-24	999.351
31-Dec-24	952.767
31-Jan-25	988.364
28-Feb-25	926.176
31-Mar-25	916.079

Total Observations	
	18731
MAE	
	76.19
RMSE	
	88.41

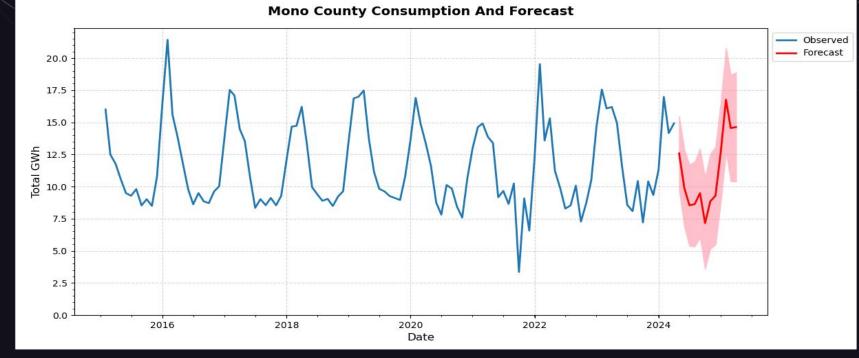

C	D	Contractor	C	A	A	Famal
San	Rernardino	COUNTY	Consump	TION	And	Forecast
Juli	Bernardino	country	consump		Alle	I OI CCUDE


Date	Observed (GWh)
30-Apr-23	838.765
31-May-23	1008.538
30-Jun-23	679.274
31-Jul-23	1130.950
31-Aug-23	1538.715
30-Sep-23	1382.333
31-Oct-23	1249.857
30-Nov-23	959.405
31-Dec-23	1131.718
31-Jan-24	1234.221
29-Feb-24	1066.673
31-Mar-24	638.373

Date	Forecasted (GWh)
30-Apr-24	849.674
31-May-24	948.019
30-Jun-24	971.764
31-Jul-24	1167.896
31-Aug-24	1415.371
30-Sep-24	1331.546
31-Oct-24	1164.612
30-Nov-24	905.018
31-Dec-24	939.546
31-Jan-25	1181.763
28-Feb-25	931.404
31-Mar-25	808.863

Total Observations		
	18069	
MAE		
	105.42	
RMSE		
	130.95	

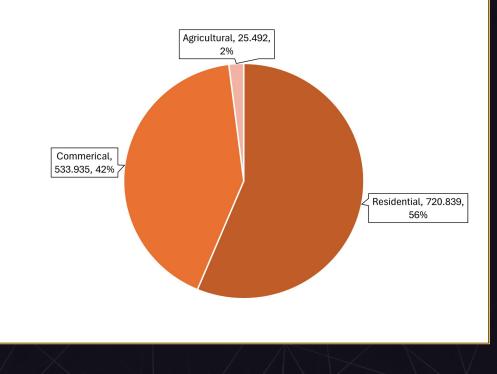
Total Observed	12,858.82
Total Forecasted	12,615.48
Difference	- 1.89 %

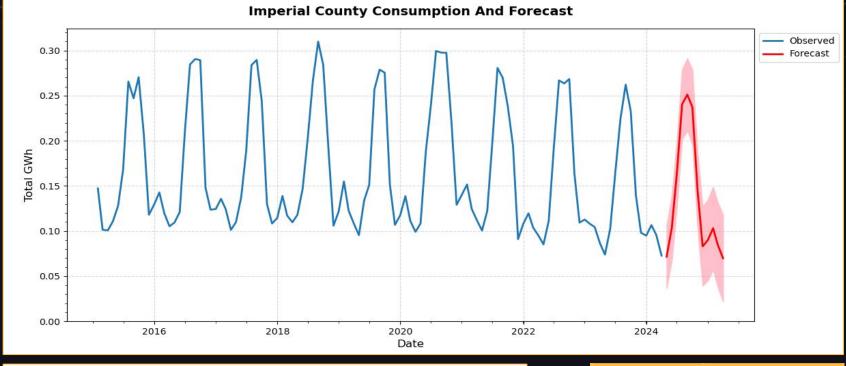

Date	6	Observed (GWh)
	30-Apr-23	139.345
	31-May-23	60.149
	30-Jun-23	64.516
се. 	31-Jul-23	93.569
	31-Aug-23	115.908
	30-Sep-23	68.494
	31-Oct-23	75.167
	30-Nov-23	198.119
	31-Dec-23	45.562
	31-Jan-24	70.029
	29-Feb-24	103.897
	31-Mar-24	41.919

Date	Forecasted (GWh)
30-Apr-24	100.937
31-May-24	66.101
30-Jun-24	67.326
31-Jul-24	83.380
31-Aug-24	84.944
30-Sep-24	66.433
31-Oct-24	70.800
30-Nov-24	121.707
31-Dec-24	63.794
31-Jan-25	76.064
28-Feb-25	86.752
31-Mar-25	62.793

Total Obser	rvations	
	4581	
MAE		
	19.45	
RMSE		
	28.2	

Total Observed	1,076.68
Total Forecasted	951.03
Difference (%)	- 11.67

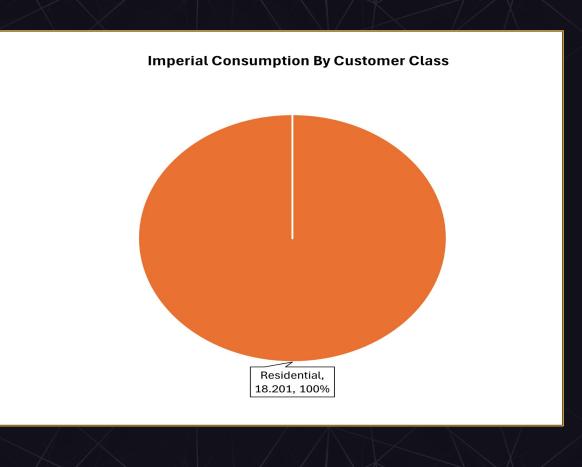

Date	Observed (GWh)
30-Apr-23	14.950
31-May-23	11.466
30-Jun-23	8.563
31-Jul-23	8.082
31-Aug-23	10.428
30-Sep-23	7.204
31-Oct-23	10.400
30-Nov-23	9.337
31-Dec-23	11.287
31-Jan-24	16.977
29-Feb-24	14.162
31-Mar-24	14.917

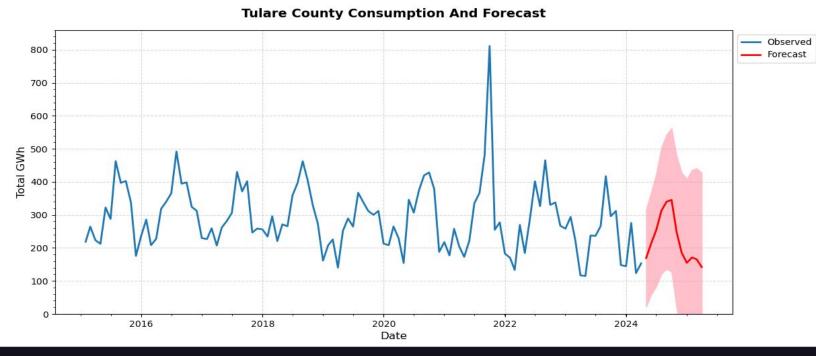

Date	Forecasted (GWh)
30-Apr-24	12.580
31-May-24	9.869
30-Jun-24	8.534
31-Jul-24	8.635
31-Aug-24	9.483
30-Sep-24	7.157
31-Oct-24	8.856
30-Nov-24	9.281
31-Dec-24	12.642
31-Jan-25	16.756
28-Feb-25	14.548
31-Mar-25	14.628

Total Observations	
	1051
MAE	
	0.78
RMSE	
	1.07

	Total Observed	137.77
	Total Forecasted	132.97
\langle	Difference	- 3.49 %

Mono Consumption By Customer Class

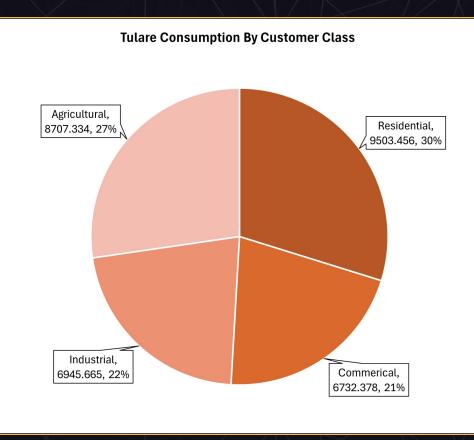


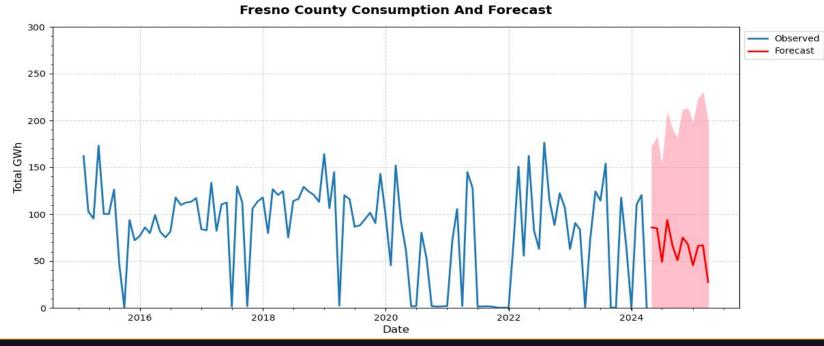

Date		Observed (GWh)
30-A	pr-23	0.074
31-M	ay-23	0.102
30-J	un-23	0.164
31-	Jul-23	0.224
31-A	ug-23	0.262
30-S	ep-23	0.233
31-0	ct-23	0.139
30-N	ov-23	0.098
31-D	ec-23	0.095
31-J	an-24	0.106
29-F	eb-24	0.095
31-M	lar-24	0.073

Date	Forecasted (GWh)
30-Apr-24	0.071
31-May-24	0.104
30-Jun-24	0.164
31-Jul-24	0.240
31-Aug-24	0.251
30-Sep-24	0.237
31-Oct-24	0.145
30-Nov-24	0.083
31-Dec-24	0.090
31-Jan-25	0.103
28-Feb-25	0.085
31-Mar-25	0.070

otal Observations		
	111	
MAE		
	0.006	
RMSE		
	0.008	

	Total Observed	1.67
Ś	Total Forecasted	1.64
/	Difference	- 1.41 %

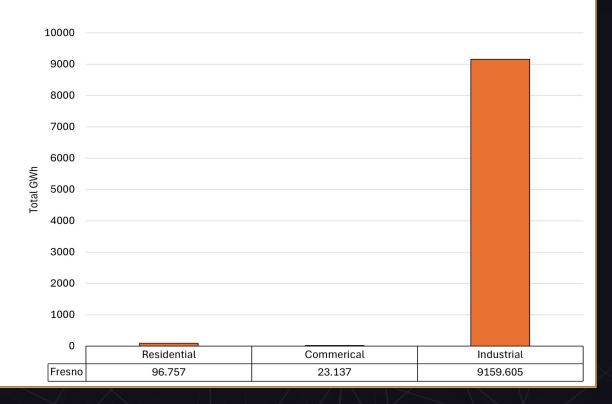


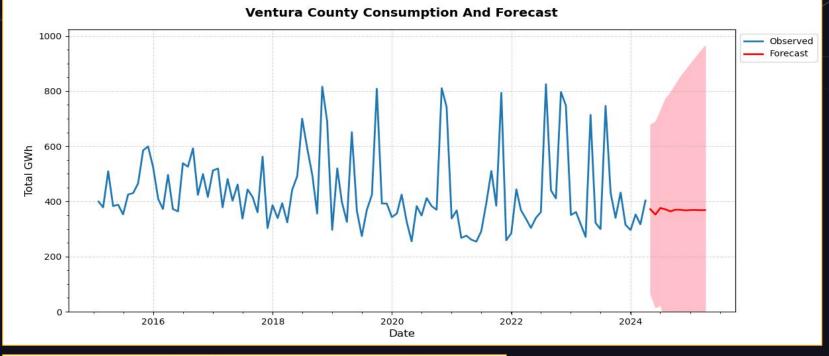

Date	Observed (GWh)
30-Apr-23	114.883
31-May-23	237.492
30-Jun-23	236.479
31-Jul-23	266.210
31-Aug-23	417.030
30-Sep-23	295.853
31-Oct-23	311.857
30-Nov-23	147.923
31-Dec-23	144.474
31-Jan-24	275.591
29-Feb-24	123.848
31-Mar-24	153.148

Date	Forecasted (GWh)
30-Apr-24	169.310
31-May-24	214.523
30-Jun-24	254.360
31-Jul-24	312.753
31-Aug-24	339.845
30-Sep-24	345.275
31-Oct-24	247.002
30-Nov-24	185.609
31-Dec-24	154.799
31-Jan-25	170.942
28-Feb-25	165.654
31-Mar-25	141.944

Total Observations		
6768		
MAE		Tot
44.91		Ob
RMSE		
52.39	$\sim 10^{-1}$	
		Tot
		For

Total Observed	2,724.79
Total Forecasted	2,702.02
Difference	- 0.84 %




Date	Observed (GWh)		
30-Apr-23	72.789		
31-May-23	124.279		
30-Jun-23	114. <mark>51</mark> 6		
31-Jul-23	154.037		
31-Aug-23	0.167		
30-Sep-23	0.151		
31-Oct-23	117.692		
30-Nov-23	66.502		
31-Dec-23	0.170		
31-Jan-24	110.219		
29-Feb-24	120.384		
31-Mar-24	0.223		

Date	1	Forecasted (GWh)
30-Apr	-24	85.817
31-May	-24	85.005
30-Jun	-24	49.180
31-Jul	-24	93.798
31-Aug	-24	66.532
30-Sep	-24	50.811
31-Oct	-24	74.910
30-Nov	-24	68.176
31-Dec	-24	45.302
31-Jan	-25	66.190
28-Feb	-25	66.836
31-Mar	-25	27.594

	Difference	- 11.46 %
46.55	Total Forecasted	780.15
Total Observations 406 MAE 42.45 RMSE	Total Observed	881.13

Fresno Consumption By Customer Class



Date	Observed (GWh)
30-Apr-23	713.766
31-May-23	321.825
30-Jun-23	299.496
31-Jul-23	746.334
31-Aug-23	430.502
30-Sep-23	340.429
31-Oct-23	431.967
30-Nov-23	315.261
31-Dec-23	296.089
31-Jan-24	352.580
29-Feb-24	316.846
31-Mar-24	403.144

Date		Forecasted (GWh)
	30-Apr-24	371.545
	31-May-24	352.384
	30-Jun-24	375.994
	31-Jul-24	371.288
	31-Aug-24	363.919
	30-Sep-24	369.873
	31-Oct-24	369.751
	30-Nov-24	367.318
	31-Dec-24	368.683
	31-Jan-25	368.967
	28-Feb-25	368.241
	31-Mar-25	368.514

Total Observations				
6524				
MAE				
	100.8			
RMSE				
	154.33			

Total Observed	4,968.24
Total Forecasted	4,416.48
Difference	- 11.11 %

Madera County

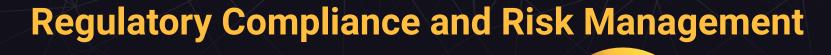
	ZipCode	County	Month	Year	CustomerClass	TotalkWh	TotalGWh
Date							
2017-06-01	93643	Madera County	6	2017	Commercial	179924.0	0.179924
2015-10-01	93643	Madera County	10	2015	Commercial	152547.0	0.152547
2019-10-01	93643	Madera County	10	2019	Commercial	177920.0	0.177920

Not Enough Data

Limitations Possibly Affecting Models

Limited Historical Data

Scope


Resource Allocation Strategies

Involves optimizing operational processes, enhancing customer service, adopting innovative technologies, and promoting sustainability

*

Data-Driven Decision Making

- Use data analytics tools to collect and analyze data on consumption patterns, peak demand time, and customers' preferences
- Predictive analytics to forecast future demand and identify areas for resource optimization
- Real-time monitoring systems could help respond to fluctuations in supply and demand

Requirements

Stay up to date on energy regulation utilities and addresses risks and limitations

Mitigating Risk

Plans related to supply chain disruptions, cyber threats, and natural disasters should be prepared

Infrastructure Investment

Renewables

Prioritize investments in renewables to diversify the energy mix and reduce reliance on fossil fuels

Upgrade **transmission and distribution networks** to improve efficiency, reliability, and resilience against extreme weather events and cyber threats

Technologies

Invest in **smart grid technologies** like advanced metering infrastructure (AMI) and distribution automation, to enable remote monitoring and control of energy distribution

Energy Storage Solutions

Battery Storage Solutions:

- Lithium-Ion Batteries:
 - high energy density,fast response times, scalable.
 - Better for smaller scale projects (residential, commercial, or industrial)
- Flow Batteries (vanadium redox):
 - long cycle life and scalable.
 - Better for larger scale projects (Grid-scale)

Pumped Hydro Storage Solutions:

- Existing Reservoirs:
 - leverage existing reservoirs and hydroelectric facilities for pumped hydro storage.
- New Pumped Storage Projects:
 - constructing new reservoirs or repurposing existing infrastructure to create a closed-loop pumped hydro storage system.
 - Significant cost implications

Sustainability Initiatives

- Create sustainability goals and include targets for reducing greenhouse gas emissions, increasing renewable energy capacity, and promoting energy efficiency
- Interact with stakeholders to support and align with sustainability efforts

Energy-Saving Initiatives

 Designing customized energy-saving initiatives for high electricity consumption areas involves a multifaceted approach

		:			
		:			

Data Analysis & Assessment

Data Collection

Collect data on target areas for energy consumption including residential, commercial, and industrial sectors

Assessment

Identify peak times of energy consumption, major factors to the latter, and areas with most potential to improve

Demand Response & Time-of-Use Pricing

- Implement demand response programs to incentivize participants in targeted areas to reduce electricity usage during peak demand periods
- Time-of-use pricing plans that encourage customers to shift energy-intensive activities to off-peak hours would reduce strain on the grid and lower energy costs

Monitoring Feedback

- Implement real-time monitoring of energy consumption and savings systems to track effectiveness
- Provide feedback to participants and stakeholders on energy usage and savings to determine successes and areas for improvement

Technology Integration

Introduce energy-efficient technologies such as **LED lighting, smart thermostats, and energy-efficient appliances** through subsidized or discounted programs

Provide **training and support** for the installation, operation, and maintenance of these technologies to ensure maximum effectiveness.

Incentive Programs

*

*

Encourage adoption of energy-efficient technologies Make sure incentives match the needs and preferences of target demographic such as income level, property household, & customer class

Business Energy Assessments & Incentives

Offer financial incentives, rebates, or low-interest loans to businesses for implementing energy-saving measures such as lighting upgrades, equipment optimizations, and building envelope improvements.

Partner with local businesses to conduct energy assessments and identify opportunities for efficiency improvements

Continuous Improvement

Internal Culture Development:

- Actively seek feedback from employees
- Use suggestion boxes, forums, and recognition programs
- Incentivize and reward innovative ideas and contributions

Cross-Sector Collaboration:

- Collaborate with research institutions, universities, and startups
- Exchange ideas, share knowledge, and collaborate on research and develop initiatives

Training and Development:

- Invest in training and development programs to enhance employees
- Provide workshops, seminars, and conferences focus on the and emerging technology within the energy industry

Data-Decision Making:

 Leverage data analytics, machine learning, and predictive modeling techniques to identify opportunities for optimization and efficiency improvement.

Policy Support

Advocacy

Get support for policies at local, regional, and national levels to create an enabling environment for energy conservation

What does it include?

Building codes that mandate energy-efficient construction standards, incentives for renewable energy adoption, or demand-side

Partnerships and Collaboration

Government Agency Collaborations:

- Collaborate with government agencies at the local, state, and federal levels to align efforts in promoting energy efficiency, renewable energy adoption, and regulatory compliance.
- Benefits: Regulatory Compliance and Support, Access to Funding and Incentives, Public Policy Advocacy

Non-Profit Organization Partnerships:

- Partner with non-profit organizations focused on sustainability, energy conservation, and community development to leverage their expertise, networks, and community outreach capabilities. (Environmental Defense Fund, Sierra Club, Alliance to Save Energy)
- Benefits: Access to Expertise and Resources, Expanded Reach and Community Engagement, Enhanced Credibility and Trust

THANK YOU