

EMP Resilience and Prediction Initiative:

MISSA Data Analytics Team

Our Team

Nathan Leung

Vincent Pastrana

Brandon Chang

Darien Lin

Richwei Chea

Table of contents

Background & Intro

Background

EMP Threat

EMPs pose a risk to electrical grids, as they can induce currents in power lines, potentially **damaging transformers** and causing **widespread power outages**. The initial damage can lead to cascading failures across multiple critical infrastructure sectors, expanding beyond the initial area to affect millions of households and businesses.

What are **EMPs**?

- 1. Brief burst of electromagnetic energy
- 2. Short circuits wide range of electronic equipment
- 3. EMPS can be artificial or natural
- 4. Reach earth fairly quickly (4 hours 15 days)

EMP Effects

O2 Research Question & Objectives

Research Question

How can correlating EMPs with environmental and solar phenomena enhance SoCal Edison's preparedness for potential disruptions?

Research Objectives

Our data compilation includes information sourced from various **scientific institutions** and **national databases**, covering diverse domains such as sunspot numbers, historical drought conditions, and earthquake occurrences spanning different time periods.

Main Variables

Differences between Earthquake Data?

Old Earthquake Data

Total Earthquake Data

- Earthquake data of magnitude 6 and above
- Only went up to the year 2014

- Earthquake data of all magnitudes
- Went up until 2023

	A	в	С	D	E	F	G	н
1	Year T	Month	OutagesCount	Total Daily Sunspots	Northern Total Daily Sunspots	Southern Total Daily Sunspot	Earthquakes	Magnitude
98	2000	1	-0.8067081867	1.076998656	0.7748322918	1.211398047	0.5350732407	-0.77815900
99	2000	2	0	1.457998978	0.7117958947	1.969653472	-0.7525036835	-1.04569597
100	2000	3	-0.8067081867	2.551548575	1.649987604	3.051554504	-1.074397915	1.66534539
101	2000	4	-0.8067081867	1.986791461	1.684657622	1.985065167	-1.074397915	-0.90300959
102	2000	5	-0.2492269195	1.648499139	1.670999736	1.379899253	-0.4306094525	0.49531701
103	2000	6	-0.6952119333	1.928348933	2.779389718	0.807611622	1.98359728	0.47819464
104	2000	7	-0.9182044402	3.014593214	3.237454203	2.345698845	0.0522318941	-0.49251182
105	2000	8	-0.4722194264	1.901937407	2.185796979	1.339828844	0.3741261251	0.46677973
108	2000	9	0	1.388879451	1.625823652	0.9493992217	-0.4306094525	-1.73059064
107	2000	10	0	1.224790817	0.8179071631	1.439491142	0.5350732407	-0.29659244
108	2000	11	0	1.423720188	1.828590729	0.8148037467	1.500755934	1.3670011
109	2000	12	-1.029700694	1.254574028	1.684657622	0.6463025412	0.2131790096	-0.49533419
110	2001	1	-0.9182044402	1.242773133	1.551230582	0.7552118569	0.5350732407	2.12729257
111	2001	2	0	0.6695868074	0.7569719793	0.483966014	0.5350732407	0.07795932
112	2001	3	-0.4722194264	1.646813297	1.613216373	1.433326464	-0.7525036835	-1.36674035
113	2001	4	0	1.484410505	1.429360214	1.316197577	-0.269662337	-0.46197893
114	2001	5	-0.8067081867	1.233781975	1.903183799	0.3945781794	-0.591556568	-0.71276107
115	2001	6	-0.8067081867	2.179539411	3.156557494	0.898026903	0.2131790096	0.17733020
118	2001	7	0	0.9005471797	0.906158119	0.7603490888	-0.269662337	0.65875778
117	2001	8	-1.029700694	1.572074296	1.415702328	1.489836015	-0.9134507991	0.36078413
118	2001	9	0	2.773517789	2.338134939	2.784418447	-0.591556568	-1.28350662
119	2001	10	0	2.1390792	2.23517549	1.725121235	-0.1087152214	0.88057026
120	2001	11	0	1.735039035	1.846451042	1.36654245	0.0522318941	-0.68349207
121	2001	12	0	2.476247627	2.175290913	2.400153503	-0.1087152214	-0.1895776

Data Cleaning

- 1. Merged datasets together within to allow for analysis and visualizing
- 2. Transformed Dataset to have every month for every year in our dataset
- 3. Normalized variables to a common scale using Z-score transformation

.

Data Analysis

Data Visualization

Utilized Tableau and Python libraries to craft compelling visual representations. Produced visualizations derived from in-depth analysis and exploration Visualized Correlations to identify key outcomes and trends Generated conclusions and useful insights based on visual representations

Correlation Research Diagram

Sunspots

What are Sunspots?

Sunspots are darker regions of the Sun that are much cooler than the regions nearby. They are caused by large concentrations of strong magnetic fields pushing energy away from those spots.

Daily Sunspots

Solar Cycle

The **solar cycle**, an approximately 11-year cycle of solar activity, causes changes in the number of sunspots and other solar phenomena. It includes periods of increased activity (**solar maximum**) and decreased activity (**solar minimum**) driven by the Sun's magnetic dynamo process. This cycle affects space weather and can impact Earth's atmosphere and technological systems.

Earthquakes and Sunspots

As proton density in the magnetosphere rises, so does the frequency and intensity of seismic activity across all magnitudes

Why Solar Flare Values?

Utilizing solar flare value to investigate potential correlations with EMP occurrences helps to explore the impact of solar activity on Earth's electromagnetic environment, offering insights into predicting disruptive electromagnetic phenomena.

Can Solar Flares Cause EMPs?

Solar flares, which are intense radiation bursts from sunspot-associated magnetic energy, can lead to coronal mass ejections (CMEs) - massive releases of solar wind and magnetic fields into space

When CMEs reach Earth, they interact with the magnetosphere, potentially causing geomagnetic storms by transferring solar wind energy into Earth's space environment, altering its magnetic currents and fields, and potentially inducing EMP-like effects on electrical systems.

Solar Flare Data Source

• Solar H-alpha Kandilli Flare Index Flare index data compiled from the Kandilli Solar Observatory. This dataset was prepared by the Kandilli Observatory and Earthquake Research Institute at the Bogazici University, and made available through the NOAA National Geophysical Data Center (NGDC).

• The Value measured is the intensity of the solar flare, measures total energy emitted by solar flare.

Day	Ja	an Feb	o Mar	Ар	r May	Jun	Ju	l Aug	Sep	0c	t Nov	Dec
1 2 3 4	0.17 0.39 1.03 0.62	0.19 0.09 0.78 4.92	2.82 14.67 13.37 2.29	16.44 7.66 5.12 25.45	2.27 2.35 0.00 5.06	9.20 29.57 18.87 8.04	2.92 4.71 1.37 9.44	0.48 2.23 1.27 2.55	2.12 4.77 3.91 9.46	15.14 9.16 2.38 1.88	1.98 0.72 8.33 1.78	2.67 1.07 0.64 0.49
5	0.00	11.58	6.78	3.62	1.54	10.12	1.19	0.89	1.00	3.16	3.95	0.40

Correlation Analysis

Feature	Correlation Coefficient
Total Daily Sunspots	0.743
Magnitude	0.226
Year	-0.438
Earthquakes	-0.365
6+ Magnitude Earthquakes	-0.065

Solar Flares x Total Daily Sunspots

- **Direct Solar Activity Link:** Demonstrates the intrinsic connection between sunspots and solar flares as indicators of solar magnetic activity.
- **Predictive Value for Space Weather:** Crucial for forecasting geomagnetic storms that affect Earth's technological systems.
- **Risk Assessment for Space Missions:** Vital for evaluating solar radiation risks, particularly for manned space missions beyond Earth's protective magnetosphere.
- **Solar Cycle:** Follows same yearly solar cycle just like sunspots

Solar Flares x Earthquakes

• What we know now:

- The hypothesis that solar flares directly influence earthquake activity remains speculative and is a topic of ongoing research.
- What is the difference from sunspots vs. earthquakes?
 - Analyzing sunspots in relation to earthquakes focuses on broader, cyclical patterns of solar activity, whereas analyzing solar flare values targets specific incidents and their immediate aftermath, offering a different perspective on solar-terrestrial interactions.

Multiple Linear Regression

Predictors

6+ Magnitude Earthquakes

Year

Total Earthquakes

Year

Adjusted R Square : 0.004 Mean Error (ME) : 0.0000 Root Mean Squared Error (RMSE) : 1.2033 Mean Absolute Error (MAE) : 0.6619

Adjusted R Square : 0.220 Mean Error (ME) : 0.0000 Root Mean Squared Error (RMSE) : 0.6674 Mean Absolute Error (MAE) : 0.4448

Predicted vs Actual Values

Adjusted R Square : 0.22

Adjusted R Square : 0.004

What does this mean?

An increase in model performance through a 2 year lag suggests a delayed relationship between sunspots and earthquakes

Because the 6.0 + Earthquake dataset does not have other magnitude occurrences to compare by, **further research is needed** to better understand why solar flare does fairly well as a predictor for Total Earthquake Counts.

Higher model fit for **total earthquake data** suggests more analysis needed to show correlation with higher magnitudes

Magnitude Analysis w Solar Flare

	coef	std err	t	P> t	[0.025	0.975]
const Year New Earthquake	307.6351 -0.1534 -0.1833	32.605 0.016 0.084	9.435 -9.438 -2.178	0.000 0.000 0.031	243.259 -0.185 -0.349	372.012 -0.121 -0.017
Solar Flare Value	-0.1047	0.065	-1.616	0.108	-0.233	0.023

Multiple Linear	Regression	Solar Flare Value is NOT statistically significant
Fredictors		
Solar Flare Value	Adjusted R Square : 0.470 Mean Error (ME) : 0.0000	Not a good model
Year	Root Mean Squared Error (RMSE) : 0.7260	
	Mean Absolute Error (MAE) : 0.5630	

Magnitude Analysis w Sunspots

	coef	std err	t	P> t	[0.025	0.975]
const	350.8737	32.139	10.918	0.000	287.418	414.329
Year	-0.1749	0.016	-10.920	0.000	-0.207	-0.143
New Earthquake	-0.2379	0.080	-2.967	0.003	-0.396	-0.080
Total Daily Sunspots	-0.2764	0.061	-4.510	0.000	-0.397	-0.155

N A B A B	 		-
NAULTUR	inoar	Dog	roccion
IVIUIUL	LITEUT	neu	16551011

Predictors

Total Daily Sunspots

Year

Adjusted R Square : 0.508 Mean Error (ME) : 0.0000 Root Mean Squared Error (RMSE) : 0.7024 Mean Absolute Error (MAE) : 0.5262 Sunspot Value is <u>IS</u> statistically significant

Potentially good model

Different Magnitude Bins

This visual confirms that 6.0+ Magnitude Earthquakes increases as the solar flare value increases.

Why Sunspots a Better Predictor for Magnitude than Solar Flare Value?

- Longer Duration: Sunspots can persist for days to weeks, offering a more prolonged and stable measure of solar activity compared to the transient nature of solar flares.
- Indicative of Solar Cycle: Sunspots are a key indicator of the solar cycle's phase and intensity, potentially correlating better with long-term geophysical processes on Earth.

Sunspots might offer a more consistent, statistically significant, and theoretically plausible predictor for earthquake magnitude

Magnitude and Year

Adjusted R Square : 0.478 Mean Error (ME) : 0.0000 Root Mean Squared Error (RMSE) : 0.7282 Mean Absolute Error (MAE) : 0.5672

Why Earthquakes?

Earthquakes can indirectly cause EMPs by damaging power infrastructure lines and transformers. This damage can lead to power disruptions, especially in areas with high-voltage lines or substations, potentially causing EMPs that affect electronic devices and systems.

• • •

• • • •

Earthquake Coordinates and Fault Lines Earthquake coordinates are found along fault lines, where tectonic plates meet and move. Most earthquakes occur in these areas, signaling the release of accumulated stress between the plates.

 $\mathbf{A} \nabla$

Magnitude x Earthquakes

Inverse relationship

Feature	Correlation Coefficient
Magnitude vs. Earthquakes	-0.36

• • •

\bullet \bullet \bullet

Logistic Regression

- Can capture nonlinear relationships
- Classification provides broader outcome, tests to see if predictors can see certain range rather than exact amount

What factors are the best predictors that can help determine the range of earthquake counts, whether it be below or above the Earthquake Count Median?

Classification Model Importance

std	importance	feature
0.032027	0.014112	D3
0.032819	0.014440	0ld Earthquake
0.036770	0.015521	DØ
0.035237	0.015593	None
0.035651	0.016156	OutagesCount
0.034841	0.016310	Month
0.043230	0.017736	Longitude
0.042598	0.017841	D1
0.042223	0.018419	D2
0.046035	0.019987	D4
0.059608	0.030155	Magnitude
0.061196	0.030796	Southern Total Daily Sunspots
0.063637	0.037138	Latitude
0.073172	0.039386	Solar Flare Value
0.081772	0.045900	Total Daily Sunspots
0.078360	0.047558	Northern Total Daily Sunspots
0.098359	0.059895	Year
0.333528	0.543056	New Earthquake

Independent Variables

0.49

0.49

macro avg

weighted avg

0.49

0.49

0.49

0.49

<u>Year</u>	Score = 75%	CV = 57%	Northern Sunspo	ots Score =	= 63%	CV = 63%
Accuracy: 0.7450980392156863 Classification Report:			Accuracy: 0.6274509803 Classification Report:	921569		
precision re	ecall f1-score	support	precisio	n recall	f1-scor	e support
0 0.70	0.88 0.78	26	0 0.6	7 0.54	0.6	0 26
1 0.83	0.60 0.70	25	1 0.6	0 0.72	0.6	5 25
accuracy	0.75	51	accuracy		0.6	3 51
macro avg 0.77	0.74 0.74	51	macro avg 0.6	3 0.63	0.6	3 51
weighted avg 0.76	0.75 0.74	51	weighted avg 0.6	3 0.63	0.6	2 51
<u>Total Sunspots</u>	Score = 49%	CV = 60%	Solar Flare Value	<u>Score</u> =	= 55%	CV = 56%
Accuracy: 0.490196078431372	53		Accuracy: 0.5490196078 Classification Report:	431373		
precision	recall f1-sco	re support	precisio	n recall	f1-scor	e support
0 0.50	0.42 0.4	46 26	0 0.5	4 0.73	0.6	2 26
1 0.48	0.56 0.5	52 25	1 0.5	6 0.36	0.4	4 25
accuracy	0.4	49 51	accuracy		0.5	5 51
	0 10 0 /	10 51	macro avg 0.5	5 0.55	0.5	3 51

51

51

weighted avg

0.55

0.55

0.53

51

Independent Variables

<u>D4</u>		Score	= 65%	CV = 57%	Magnitud	<u>e</u>	Score =	= 55% (CV = 58%
Accuracy: 0.6470 Classification F	058823529411 Report:	.8			Accuracy: 0.5 Classificatio	64901960784313 on Report:	73		
pi	recision	recall	f1-sco	re support		precision	recall	f1-score	support
0	0.64	0.69	0.6	57 26	0	0.56	0.58	0.57	26
1	0.05	0.00	0.0	55 25	1	0.54	0.52	0.53	25
accuracy	0.65	0.65	0.0	55 51	accuracy			0.55	51
macro avg	0.65	0.65	0.0	5 51	macro avo	0.55	0.55	0.55	51
weighted avg	0.65	0.65	0.0	55 51	weighted avg	0.55	0.55	0.55	51
					1				

<u>Power Outag</u>	es	Score	= 63%	CV = 45%	Southern	<u>Sunspots</u>	Score =	63%	CV	/ = 55%
Accuracy: 0.6274 Classification R	50980392156 Report:	9			Accuracy: 0.6	2745098039215	69			
pr	recision	recall	f1-scor	e support		precision	recall	f1-sco	re	support
0 1	0.62 0.64	0.69 0.56	0.6 0.6	5 26 0 25	0 1	0.61 0.65	0.73 0.52	0. 0.	67 58	26 25
accuracy macro avg weighted avg	0.63 0.63	0.63 0.63	0.6 0.6 0.6	51 53 51 53 51	accuracy macro avg weighted avg	0.63 0.63	0.63 0.63	0. 0. 0.	63 62 62	51 51 51

Best Combinations Classification Classification Predictors Predictors Accuracy: 76% **Solar Flare Value Northern Total Sunspots** CV: 66% Accuracy: 73% Year CV: 70% Year Solar Flares/Sunspots remain best predictor in determining high or low Earthquake counts

Climate Change

Greenhouse Gases

Carbon Dioxide (CO2)

Vital for Earth's carbon cycle but human activities, like burning fossil fuels and deforestation, have drastically raised CO2 levels, worsening the greenhouse effect and global warming.

Methane (CH4)

and ecosystems.

Nitrous Oxide (N20)

A potent greenhouse gas, contributing significantly to climate change, primarily from human activities like agriculture and fossil fuel production.

A potent greenhouse gas from agriculture and

industry, contributes to environmental harm,

ozone layer depletion, affecting human health

including crop damage, health risks, and

(4)

Trichlorofluoromethane (CFC-11)

A man-made compound that was commonly used as a refrigerant and propellant. It is also a potent greenhouse gas, contributing to ozone depletion in the upper atmosphere.

Correlation Analysis

Feature	Correlation Coefficient
Nitrous Oxide (N20)	0.51
Carbon Dioxide (CO2)	0.50
Methane (CH4)	0.30
Trichlorofluoromethane (CFC-11)	-0.57

Multiple Linear Regression

Predictors Nitrous Oxide (N20)

Carbon Dioxide (CO2)

Methane (CH4)

Trichlorofluoromethane (CFC-11)

Adjusted R Square : 0.336 Mean Error (ME) : 0.0000 Root Mean Squared Error (RMSE) : 0.6468 Mean Absolute Error (MAE) : 0.4457

	coef	std err	t	P> t	[0.025	0.975]
const	-0.4906	0.060	-8.154	0.000	-0.610	-0.371
CO2	-0.1030	0.244	-0.422	0.674	-0.586	0.381
CH4	-0.0421	0.117	-0.360	0.720	-0.274	0.190
N20	-0.7679	0.427	-1.797	0.075	-1.614	0.078
CFC-11	-1.2971	0.327	-3.965	0.000	-1.945	-0.649

These values are <u>NOT</u> statistically significant

Not a good model

Predicted vs Actual Values

Carbon Dioxide (CO2)

Nitrous Oxide (N2O)

Adjusted R Square : 0.179

Adjusted R Square : 0.188

Predicted vs Actual Values

Trichlorofluoromethane (CFC-11)

Methane (CH4)

Adjusted R Square : 0.258

Adjusted R Square : 0.035

What does this mean?

The combined analysis of N2O, CO2, CFC-11, and CH4 suggests that these gases **together do not contribute** significantly to earthquakes. However, there may be **individual connections** between N2O, CO2, and CFC-11 and earthquake activity. **Further research is needed** to explore these potential links.

Preventative Measures

N20

Reducing emissions involves using fertilizers more efficiently in agriculture, **managing manure better**, optimizing industrial processes, and **promoting sustainable practices**.

CO2

Reducing emissions involves transitioning to **renewable energy** sources, improving energy efficiency, promoting sustainable transportation, and implementing carbon capture and storage technologies.

CFC-11

Since it is a **man made material** as long as we stop manufacturing it we should be alright however it can still appear as it was still used in old appliances. Steadily declining after 2018

Correlation Matrix

Climate-related factors are all highly correlated with each other, meaning multicollinearity

Multiple Linear Regression

Adjusted R Square : 0.093

Multiple Linear Regression

Aerosols

- **Aerosols:** Particles or droplets in the air and includes airborne dusts, mists, fumes or smoke
- **Examples:** Sea spray, mineral dust, smoke, fog, and volcanic ash
- Possible correlation between, Earthquake and Magnitude:
 - Aerosol Induced Seismicity

Earthquake vs Aerosols

Magnitude vs Aerosols

Aerosol Analysis

Aerosol Levels comparing with Magnitude < 6

Aerosols_bi	ins	
Very Low	1.907611	
Low	1.653333	
Medium	1.157500	
High	2.640000	
Very High	1.557143	
Name: earth	nquake_magnitude, dtype: float64	

Aerosol Levels comparing with Magnitude > 6

Aerosols b:	ins	
Very Low	6.506111	
Low	6.444444	
Medium	6.525000	
High	6.425000	
Very High	6.400000	
Name: over	six dtype: float64	

Multiple Linear Regression

Predicted Vs Actual Values on Earthquakes - Aerosols

Multiple Linear Regression – Aerosols and Magnitude \frown \checkmark

Dependent Variable: Magnitude Predictors:

CO2
N2O
Year
Month

Adjusted R Square : 0.010

Mean Error (ME): 0.0000

Root Mean Squared Error (RMSE): 0.6484

Mean Absolute Error (MAE): 0.5133

	coef	std err	t	P> t	[0.025	0.975]
const	664.9222	423.253	1.571	0.119	-173.385	1503.229
Aerosols	-0.1836	0.099	-1.858	0.066	-0.379	0.012
CO2	0.4833	0.359	1.346	0.181	-0.228	1.194
N20	1.0205	0.872	1.171	0.244	-0.706	2.747
Year	-0.3321	0.212	-1.569	0.119	-0.751	0.087
Month	-0.0289	0.023	-1.256	0.212	-0.074	0.017

Aerosols What-if?

Dependent Variable: Earthquake Predictors:

new_mult (Aerosol what-if	f)
---------------------------	----

Year

Month

Adjusted R Square : 0.301

Multiplied the top highest Aerosol levels by a factor of 5.

Tested MLR with the new Aerosol columns on Earthquake

	coef	std err	t	P> t	[0.025	0.975]
const	-212.1998	30.369	-6.987	0.000	-272.339	-152.060
new mult	0.0154	0.004	4.250	0.000	0.008	0.023
Year	0.1057	0.015	6.965	0.000	0.076	0.136
Month	0.0244	0.017	1.423	0.157	-0.010	0.058

Predicted vs Actual of Aerosol What-if

Cluster

Aerosol and Earthquake Count

What does this mean?

There is **potential** for the predictors all for except to CO2 to be **statistically significant** as P-Values are less than 0.05. As with Aerosols, there is a possible chance that Aerosols and Earthquakes are **correlated** with one another. With Aerosols and Magnitudes, there is **little correlation** as it is likely that Aerosol levels do not impact Magnitude levels as much. It seems that Aerosol levels have more of an impact with magnitudes that are of magnitude < 6. Elevated Aerosol levels have been seen before seismic activity but does **not necessarily correlate** to any Magnitude level.

Why Aerosols can be a possible predictor:

Atmospheric Loading:

- Injecting reflective aerosols, such as sulfur dioxide particles, into the stratosphere to scatter sunlight and reduce global temperature
- Researchers have hypothesized that it could potentially alter atmospheric dynamics and pressure distribution, leading to changes in seismic activity

Hydrological Cycle:

- Aerosols can affect cloud formation and precipitation patterns, influencing the distribution of water in the Earth's crust
- Changes in pore pressure within the crust due to variations in groundwater levels could potentially affect the stability of fault zones

Preventative Measures

Environmental Monitoring:

Install monitoring systems to track environmental conditions around transformers, including aerosol levels, humidity, temperature, and pollution. This data can help identify areas with high contamination levels and inform maintenance decisions.

Oil Filtration and Treatment:

Maintain filtration systems to remove contaminants from transformer oil and maintain its dielectric properties. Periodically treat oil to mitigate the effects of contamination and extend the lifespan of transformers.

Insulation Upgrades:

Upgrading transformer insulation materials can improve resistance to contamination and enhance performance under adverse environmental conditions. Using advanced insulation materials with better resistance to moisture and chemical degradation can help mitigate the effects of aerosols and extend the service life of transformers.

Why Droughts

Relationship with Earthquakes

Although not directly linked, some studies suggest that prolonged droughts can alter stress distribution in the Earth's crust, potentially increasing seismic activity in fault zones

Relationship with Sunspots

Sunspots can indirectly influence Earth's climate by affecting atmospheric circulation, potentially leading to changes in precipitation patterns and drought conditions

Independent Variables

D4		Score	= 65%	CV = 56%	D2		Score =	51% C	V = 54%
Accuracy: 0.6470588235294118				Accuracy: 0.5098039215686274					
prec	ision	recall	f1-score	support		precision	recall	f1-score	support
0 1	0.64 0.65	0.69 0.60	0.67 0.63	26 25	0	0.52	0.62	0.56	26 25
accuracy			0.65	51	accuracy	0.50	0.40	0.51	51
macro avg weighted avg	0.65 0.65	0.65 0.65	0.65 0.65	51 51	macro avg weighted avg	0.51 0.51	0.51 0.51	0.50 0.50	51 51
		Score	= 49%	CV = 49%			Score =	58%	V = 47%
Accuracy: 0 49019607843137253				Accuracy: 0.5882352941176471					
Classification Rep	ort:				Classificatio	on Report:			
prec	ision	recall	f1-score	support		precision	recall	f1-score	e support
0	0.50	0.46	0.48	26	0	0.62	0.50	0.55	26
	0.48	0.52	0.50	25		0.57	0.08	0.02	. 25
accuracy			0.49	51	accuracy	0 50	0 50	0.59	51
macro avg weighted avg	0.49 0.49	0.49 0.49	0.49 0.49	51 51	weighted avg	0.59	0.59	0.59	51

Drought-Earthquake Relationship

Research indicates a potential relationship between droughts and earthquakes, especially for seismic events of magnitude 6 or higher. Many significant earthquakes have been preceded by extended periods of drought, suggesting a "drought-earthquake relationship."

Drought Levels vs 6+ Earthquakes

Palmer Drought Severity Index (PDSI)

Droughts vs 6+ Earthquakes (8 Year Lag)

Droughts vs Sunspots

Droughts vs Sunspots (What if?)

Adjusted R Square : 0.516

Solar Cycle Effects on Droughts

Solar Minimum

June 10, 2008 Avg. Daily Sunspot Count: 4.2

Solar Maximum

June 10, 2014 Avg. Daily Sunspot Count: 113.3

The Higher the sunspots, the more Droughts that occur at all levels. **Cluster 3** (2nd most sunspots) is only sign of increasing drought intensity counts

Power Outages

EMPs, from natural or human-made sources, can damage electronics and disrupt power grids, highlighting the need for protective measures and contingency plans

\bigtriangleup

Power Outages and Earthquakes

Yearly: There is an upward trend in both earthquake count and power outage count from 1998 to 2013

Monthly: Inverse relationship between earthquakes and power outages and higher count of power outages in the summer months

Power Outages and Sunspots

Yearly: From 2000 to 2008, both sunspot activity and power outages declined. After 2008, sunspot activity increased, while power outages fluctuated, indicating other factors influencing outages

Monthly: Sunspot activity peaks mid-year, while power outages spike in January and June

• • • •

Droughts vs Power Outages

Adjusted R Square : 0.342

Sunspots

Solar maximum increases solar radiation, leading to increased drought conditions

Droughts

Droughts can strain power generation resources, leading to an increased risk of power outages

Power Outages

Take preventative measures during a solar maximum

Preventative Measures

Inspect and Maintain Infrastructure

Increase inspections and maintenance of critical infrastructure, like power lines and transformers, after droughts to withstand potential earthquake impacts

Prepare for Droughts

Develop drought response plans considering sunspot activity. Increase water storage, implement conservation measures, and collaborate with local authorities

Invest in Solar Power

Expand solar capacity to leverage increased production during high sunspot activity, offsetting potential energy supply challenges from droughts

Next Solar Maximum: Between late 2024 and early 2026

Why Fracking?

- Fracking: Used to extract oil, natural gas, or water by injecting highly pressurized liquid deep underground
- Fracking activities is linked to the cause in earthquakes
 - Injection of wastewater into deep wells can increase underground pressure, leading to the destabilization of faults
- Induced earthquakes from fracking activities are generally low in magnitude and less frequent
- Understanding relationship with fracking and earthquake can help with other locations involved with fracking as well when developing preventative measures

Data Source

- Fractracker Alliance: <u>https://www.fractracker.org/data/da</u> <u>ta-resources/</u>
- Filtered National Data of Fracking occurrences to find possible correlations with earthquakes
- Used Texas from 2010-2016 as sample since it has the most occurrences and utilized Texas Earthquake Data for improved accuracy

Fracking occurrences by State

Texas	105703
Colorado	20291
Oklahoma	18888
North Dakota	16653
New Mexico	12094
Pennsylvania	10901
Wyoming	6435
Utah	5745
Louisiana	4378
California	3826

. . . .

Fracking Count vs Earthquake Count

Can fracking count help predict the amount of Earthquakes that occur?

MLR

	coef	std err	t	P> t	[0.025	0.975]
const	-674.5656	136.974	-4.925	0.000	-948.749	-400.383
Fracking Counts	-0.4770	0.129	-3.703	0.000	-0.735	-0.219
Year	0.3352	0.068	4.927	0.000	0.199	0.471

Multiple Linear Predictors	About 13% of the variance of Earthquakes in		
Fracking Count	Adjusted R Square : 0.132 Mean Error (ME) : 0.0000	Texas are explained by Year and	
Year	Root Mean Squared Error (RMSE) : 0.7260		
	Mean Absolute Error (MAE) : 0.5630	Fracking Count	
Current State of Fracking

Incoming Regulations

- California plans to ban fracking by the end of 2024
- Public and legislative pressure has led to increased scrutiny and regulatory oversight.

Relation with SoCal Edison

- Limited fracking operations within Southern California compared to other regions.
- Focus on renewable energy initiatives aligns with state environmental policies
- Investment in renewable energy and sustainable practices as part of risk mitigation strategies

What Can Be Improved?

More Data

More data would help validate our findings further as well as uncover insights that were not clear in our analysis

Complex Models

Techniques such as vector autoregression (VAR) or machine learning models that can handle complex nonlinear relationships might be more effective

11 year solar cycles were the only clear seasonal data we have which was limited

Geographical Analysis

Daily measurements or finer geographic distinctions could uncover patterns not visible in coarser data.

What we Learned

Droughts & Sunspots

During solar maximums, increased sunspot activity can intensify drought conditions, emphasizing the interconnectedness of solar phenomena and Earth's climate

6.0+ Earthquakes

Higher magnitude earthquakes are influenced by sunspot activity and greenhouse gases have an independent impact on earthquakes

Aerosols as Predictors

Identified aerosols as a significant predictor for earthquake counts, suggesting a potential linkage between atmospheric conditions and seismic activities

Sunspot - Earthquake Lag

Sunspot activity exhibits a delayed (lagged) effect on earthquake occurrences, indicating a complex interaction between solar activity and tectonic movements

High Level Droughts - Power Outages

The relationship between exceptional drought conditions and power outages highlights the critical need for strategic planning and adaptation measures

CO2 Impact

Our research suggests that increases in CO2 levels are correlated with earthquake activities, possibly due to the influence of CO2 on atmospheric and terrestrial dynamics

Closing Remarks

A Holistic View This project highlights the interconnectedness of atmospheric, solar, and terrestrial phenomena, urging a holistic approach to environmental and earth sciences.

Call to Action

Continued monitoring and collaboration across scientific disciplines are essential to harness these insights for practical applications in EMP preparedness and climate adaptation strategies.

Thank You for Listening!

Data Sources

Daily total and hemispheric sunspot numbers:

https://www.sidc.be/SILSO/infosndhem

Earthquake Data 1990-2023 https://www.kaggle.com/datasets/alessandrolobello/the-ultimate-earthquake-d ataset-from-1990-2023/data

Drought Data <u>https://www.drought.gov/historical-information?dataset=0&selectedDateUSDM</u> <u>=20120124</u>

Historical Data & Conditions:

https://www.drought.gov/historical-information?dataset=0&selectedDateUSDM=20 120124

Earthquake Data 1970-2014:

https://data.humdata.org/dataset/catalog-of-earthquakes1970-2014/resource/10ac 8776-5141-494b-b3cd-bf7764b2f964

Ecology icon pack

- • •
- • • • •
- •••

Introduction

Do you know what helps you make your point crystal clear? Lists like this one:

- They're simple
- You can organize your ideas clearly
- You'll never forget to buy milk!

And the most important thing: the audience won't miss the point of your presentation

About us

You can enter a subtitle here if you need it

About us

Mercury is the closest planet to the Sun and the smallest one in the Solar System—it's only a bit larger than the Moon. The planet's name has nothing to do with the liquid metal, since Mercury was named after the Roman messenger god

Our history

Our history

Our goals

Mercury

Mercury is the closest planet to the Sun and the smallest one

Venus

Venus has a beautiful name, but also high temperatures

Our philosophy

Mission

Despite being red, Mars is actually a very cold place. It's full of iron oxide dust, which gives the planet its reddish cast

Vision

Jupiter is a gas giant and the biggest planet in the Solar System and the fourth-brightest object in the night sky

Values

Mercury is the closest planet to the Sun and the smallest one in the Solar System—it's only a bit larger than the Moon

• • •

• • • •

To reinforce the concept, try using an image

Images reveal large amounts of data, so remember: use an image instead of a long text. Your audience will appreciate it

Office locations

Jupiter

0

0

Jupiter is the biggest planet of them all

Mars

Despite being red, Mars is very cold

Find out where all our offices around the world are located

Our services

Mercury	Venus	Mars
ercury is the closest planet to the Sun	Venus is the second planet from the Sun	Despite being red, Mars is very cold
	Nontuno	lupiter
Saturn	мертипе	Johnen

Best sellers

Mars

Despite being red, Mars is very cold

Venus

Venus is the second planet from the Sun

Saturn

Saturn is a gas giant and has several rings

Our strengths

. . . .

Our target

To modify this graph, click on it, follow the link, change the data and paste the new graph here, replacing this one

Our numbers

To modify this graph, click on it, follow the link, change the data and paste the new graph here, replacing this one

\$28,000	6 months	45 panels	1 M units
Jupiter is big	Mars is very cold	Earth has life	Venus is very hot

Our growth

To modify this graph, click on it, follow the link, change the data and paste the new graph here, replacing this one

Future projects

Customer testimonials

Awards we got

Mercury

Mercury is the closest planet to the Sun and the smallest one in the Solar System—it's only a bit larger than the Moon

Venus

Venus has a beautiful name and is the second planet from the Sun. It's terribly hot, even hotter than Mercury

Jupiter

Despite being red, Mars is actually a very cold place. It's full of iron oxide dust, which gives the planet its reddish cast

Our team

John James

Jenna Doe

Jane Patterson

You can replace the image on the screen with your own

You can replace the image on the screen with your own

You can replace the image on the screen with your own

Our services		
Service	Description	Price
Venus	Venus has a beautiful name and is a hot planet	\$120-\$250
Jupiter	Jupiter is the biggest planet in the Solar System	\$400-\$800
Neptune	Neptune is the farthest planet from the Sun	\$1,000-\$2,600

Jupiter's rotation period

The Sun's mass compared to Earth's

Distance between Earth and the Moon

PC mockup

You can replace the image on the screen with your own work. Just right-click on it and select "Replace image" Thanks

Do you have any questions?

addyouremail@freepik.com +91 620 421 838 yourwebsite.com

Please keep this slide for attribution

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon and infographics & images by Freepik

https://frontiersin.org/articles/10.3389/feart.2021.790412/full https://yaleclimateconnections.org/2023/05/climate-change-and-droughts-whats-the-conne ction/#:~:text=Warmer%20temperatures%20lead%20to%20drying&text=For%20that%20reaso n%2C%20hotter%20weather,will%20increase%20in%20some%20regions.

Icon pack

